
Hyperledger Cactus
Release 1.0.0-rc.3

Hyperledger Cactus

Feb 16, 2022

TABLE OF CONTENTS:

1 Hyperledger Cactus 3

2 Hyperledger Cactus Build Instructions 7

3 Examples 19

4 Governance 21

5 Code of Conduct Guidelines 23

6 Contributing 25

7 Maintainers 39

8 Whitepaper 41

9 Regulatory and Industry Initiatives Reading List 91

10 Cactus Components 93

11 Ledger Support for Connectors 161

i

ii

Hyperledger Cactus, Release 1.0.0-rc.3

Hyperledger Cactus aims to provide Decentralized, Secure and Adaptable Integration between Blockchain Networks.
Hyperledger Cactus is currently undergoing a major refactoring effort to enable the desired to-be architecture which
will enable plug-in based collaborative development to increase the breadth of use cases & Ledgers supported.

What is Cactus?

A pluggable, enterprise-grade framework to transact on multiple distributed ledgers without introducing yet another
competing blockchain.

• Cactus allows developers to abstract the application layer from the DLT addressing protocol fragmentation, low-
ering coupling and reducing implementation risks

• Cactus allows different DLT networks to interact with each other, through atomic transactions and state commits,
this eliminates information silos and increases network’s value

Why use Cactus?

• Maximize flexibility and future-proofing through plug-in architecture.

• Avoid needing explicit action from users to have a secure Cactus deployment. Policies such as vaults are built
into the SDK

• Keys and other credentials are not stored in source, configuration files, or environment variables

• Preserving Ledger Features Horizontal Scalability.

TABLE OF CONTENTS: 1

Hyperledger Cactus, Release 1.0.0-rc.3

2 TABLE OF CONTENTS:

CHAPTER

ONE

HYPERLEDGER CACTUS

This project is an Incubation Hyperledger project. For more information on the history of this project see the Cactus
wiki page. Information on what Active entails can be found in the Hyperledger Project Lifecycle document.

Hyperledger Cactus aims to provide Decentralized, Secure and Adaptable Integration between Blockchain Networks.
Hyperledger Cactus is currently undergoing a major refactoring effort to enable the desired to-be architecture which
will enable plug-in based collaborative development to increase the breadth of use cases & Ledgers supported.

1.1 Scope of Project

As blockchain technology proliferates, blockchain integration will become an increasingly important topic in the
broader blockchain ecosystem. For instance, people might want to trade between multiple different blockchains that are
run on different platforms. Hyperledger Cactus is a web application system designed to allow users to securely integrate
different blockchains. It includes a set of libraries, data models, and SDK to accelerate development of an integrated
services application. Our goal is to deliver a system that allows users of our code to securely conduct transactions
between all of the most commonly used blockchains.

1.2 Run the Examples

1.2.1 Supply Chain Example

1. Ensure a working installation of Docker is present on your machine.

2. Run the following command to pull up the container that will run the example application and the test ledgers as
well:

docker run \
--rm \
--privileged \
-p 3000:3000 \
-p 3100:3100 \
-p 3200:3200 \
-p 4000:4000 \
-p 4100:4100 \
-p 4200:4200 \
ghcr.io/hyperledger/cactus-example-supply-chain-app:2021-09-08--docs-1312

3

https://open.vscode.dev/hyperledger/cactus
https://bestpractices.coreinfrastructure.org/projects/4089
https://codecov.io/gh/hyperledger/cactus
https://wiki.hyperledger.org/display/cactus
https://wiki.hyperledger.org/display/cactus
https://wiki.hyperledger.org/display/TSC/Project+Lifecycle
https://docs.docker.com/desktop/

Hyperledger Cactus, Release 1.0.0-rc.3

3. Wait for the output to show the message INFO (api-server): Cactus Cockpit reachable http://0.
0.0.0:3100

4. Visit http://localhost:3100 in a web browser with Javascript enabled

5. Use the graphical user interface to create data on both ledgers and observe that a consistent view of the data from
different ledgers is provided.

Once the last command has finished executing, open link printed on the console with a web browser of your choice

1.2.2 Car Trade Example

• The guidance is here.

1.2.3 Electricity Trade Example

• The guidance is here.

1.3 Documentation

• Project Wiki: Schedule and logs of the maintainer meetings

• Whitepaper: The official document on Cactus design specifications

• Contributing: How to get from an idea to an approved pull request

• Build: Instructions on how to set up the project for development

• FAQ: A collection of frequently asked questions

4 Chapter 1. Hyperledger Cactus

https://wiki.hyperledger.org/display/cactus

Hyperledger Cactus, Release 1.0.0-rc.3

1.4 Roadmap

Can be found here: ROADMAP.md

1.5 Contact

• mailing list: cactus@lists.hyperledger.org

• rocketchat channel: https://chat.hyperledger.org/channel/cactus.

1.6 Build/Development Flow

To go from zero to hero with project setup and working on your contributions: BUILD.md

1.7 Contributing

We welcome contributions to Hyperledger Cactus in many forms, and there’s always plenty to do!

Please review contributing guidelines to get started.

1.8 License

This distribution is published under the Apache License Version 2.0 found in the LICENSE file.

1.4. Roadmap 5

mailto:cactus@lists.hyperledger.org
https://chat.hyperledger.org/channel/cactus

Hyperledger Cactus, Release 1.0.0-rc.3

6 Chapter 1. Hyperledger Cactus

CHAPTER

TWO

HYPERLEDGER CACTUS BUILD INSTRUCTIONS

This is the place to start if you want to give Cactus a spin on your local machine or if you are planning on contributing.

This is not a guide for using Cactus for your projects that have business logic but rather a guide for people
who want to make changes to the code of Cactus. If you are just planning on using Cactus as an npm
dependency for your project, then you might not need this guide at all.

The project uses Typescript for both back-end and front-end components.

2.1 Developers guide

This is a video guide to setup Hyperledger Cactus on your local machine.

2.1.1 Installing git

7

https://www.youtube.com/watch?v=RJhifrmSiNA

Hyperledger Cactus, Release 1.0.0-rc.3

2.1.2 Installing and configuring docker

2.1.3 Installing npm and node

8 Chapter 2. Hyperledger Cactus Build Instructions

https://www.youtube.com/watch?v=V8YBQoxdyiE
https://www.youtube.com/watch?v=94xoV9Vfu14

Hyperledger Cactus, Release 1.0.0-rc.3

2.1.4 Installing VSCode and plugins

2.1.5 Clone the repository

2.1. Developers guide 9

https://www.youtube.com/watch?v=RHQLhZRlAR0
https://www.youtube.com/watch?v=n_HiEwgzPsM

Hyperledger Cactus, Release 1.0.0-rc.3

2.1.6 Compiling all packages

2.1.7 Testing all packages

10 Chapter 2. Hyperledger Cactus Build Instructions

https://www.youtube.com/watch?v=5v82MAHPQmM
https://www.youtube.com/watch?v=mVuk8txh-JE

Hyperledger Cactus, Release 1.0.0-rc.3

2.1.8 Compiling a specific packages

2.1.9 Testing a specific package

2.1. Developers guide 11

https://www.youtube.com/watch?v=e7vkd9i-I4c
https://www.youtube.com/watch?v=Jzw9JQZu6c8

Hyperledger Cactus, Release 1.0.0-rc.3

2.1.10 Package structure - OpenAPI

2.1.11 Package structure - Web Services

12 Chapter 2. Hyperledger Cactus Build Instructions

https://www.youtube.com/watch?v=5uuRTc3X4MM
https://www.youtube.com/watch?v=DAML56rx5yQ

Hyperledger Cactus, Release 1.0.0-rc.3

2.1.12 Package structure - Main and Factory Plugin class

2.1.13 Package structure - Test class

2.1. Developers guide 13

https://www.youtube.com/watch?v=w0bmkpge2Dw
https://www.youtube.com/watch?v=3XpBYhN-8qs

Hyperledger Cactus, Release 1.0.0-rc.3

2.2 Fast Developer Flow / Code Iterations

We put a lot of thought and effort into making sure that fast developer iterations can be achieved (please file a bug if
you feel otherwise) while working on the framework.

If you find yourself waiting too much for builds to finish, most of the time that can be helped by using the npm run
watch script which can automatically recompile packages as you modify them (and only the packages that you have
modified, not everything).

It also supports re-running the OpenAPI generator when you update any openapi.json spec files that we use to
describe our endpoints.

The npm run watch script in action:

2.3 Getting Started

• Install OS level dependencies:

– Windows Only

∗ WSL2 or any virtual machine running Ubuntu 20.04 LTS

– Git

– NodeJS v16.13.1, npm v8.1.2 (we recommend using the Node Version Manager (nvm) if available for your
OS)

nvm install 16.13.1
nvm use 16.13.1

– Yarn

∗ npm run install-yarn (from within the project directory)

– Docker Engine

– Docker Compose

– OpenJDK (Corda support Java 8 JDK but do not currently support Java 9 or higher)

∗ sudo apt install openjdk-8-jdk-headless

• Clone the repository

git clone https://github.com/hyperledger/cactus.git

Windows specific gotcha: File paths too long error when cloning. To fix: Open PowerShell with administrative
rights and then run the following:

git config --system core.longpaths true

• Change directories to the project root

cd cactus

• Run the initial configuration script (can take a long time, 10+ minutes on a low-spec laptop)

14 Chapter 2. Hyperledger Cactus Build Instructions

Hyperledger Cactus, Release 1.0.0-rc.3

npm run configure

At this point you should have all packages built for development.

You can start making your changes (use your own fork and a feature branch) or just run existing tests and debug them
to see how things fit together.

For example you can run a ledger single status endpoint test via the REST API with this command:

npx tap --ts --timeout=600 packages/cactus-test-plugin-htlc-eth-besu/src/test/typescript/
→˓integration/plugin-htlc-eth-besu/get-single-status-endpoint.test.ts

You can also start the API server and verify more complex scenarios with an arbitrary list of plugins loaded into Cactus.
This is useful for when you intend to develop your plugin either as a Cactus maintained plugin or one on your own.

npm run generate-api-server-config

Notice how this task created a .config.json file in the project root with an example configuration that can be used a good
starting point for you to make changes to it specific to your needs or wants.

The most interesting part of the .config.json file is the plugins array which takes a list of plugin package names and
their options (which can be anything that you can fit into a generic JSON object).

Notice that to include a plugin, all you need is specify it’s npm package name. This is important since it allows you to
have your own plugins in their respective, independent Github repositories and npm packages where you do not have
to seek explicit approval from the Cactus maintainers to create/maintain your plugin at all.

Once you are satisfied with the .config.json file’s contents you can just:

npm run start:api-server

After starting the API server, you will see in the logs that plugins were loaded and that the API is reachable on the
port you specified (4000 by default). The Web UI (Cockpit) is disabled by default but can be enabled by changing
the property value ‘cockpitEnabled’ to true and it is reachable through port on the port your config specified (3000 by
default).

You may need to enable manually the CORS patterns in the configuration file. This may be slightly in-
convenient, but something we are unable to compromise on despite valuing developer experience very
much. We have decided that the software should be secure by default above all else and allow for
customization/degradation of security as an opt-in feature rather than starting from that state.

At this point, with the running API server, you can

• Test the REST API directly with tools like cURL or Postman

• Develop your own applications against it with the Cactus API Client(s)

• Create and test your own plugins

2.3. Getting Started 15

Hyperledger Cactus, Release 1.0.0-rc.3

2.3.1 Random Windows specific issues not covered here

We recommend that you use WSL2 or any Linux VM (or bare metal). We test most frequently on Ubuntu 20.04 LTS

2.4 Build Script Decision Tree

The npm run watch script should cover 99% of the cases when it comes to working on Cactus code and having it
recompile, but for that last 1% you’ll need to get your hands dirty with the rest of the build scripts. Usually this is only
needed when you are adding new dependencies (npm packages) as part of something that you are implementing.

There are a lot of different build scripts in Cactus in order to provide contributors fine(r) grained control over what
parts of the framework they wish build.

Q: Why the complexity of so many build scripts?

A: We could just keep it simple with a single build script that builds everything always, but that would be
a nightmare to wait for after having changed a single line of code for example.

To figure out which script could work for rebuilding Cactus, please follow the following decision tree (and keep in mind
that we have npm run watch too)

16 Chapter 2. Hyperledger Cactus Build Instructions

Hyperledger Cactus, Release 1.0.0-rc.3

2.5 Getting into the SSH connection

Upload your public key onto github if not done so already. A public key is necessary to join the ssh connection to use
upterm. For a comprehensive guide, see the Generating a new SSH key and adding it to the ssh-agent.

Locate the ci.yml within .github/workflows and add to the ci.yml code listed below:

• name: Setup upterm session uses: lhotari/action-upterm@v1 with: repo-token: ${{ secrets.GITHUB_TOKEN
}}

Keep in mind that the SSH upterm session should come after the checkout step (uses: actions/checkout@v2.3.4) to
ensure that the CI doesn’t hang without before the debugging step occurs. Editing the ci.yml will create a new upterm
session within .github/workflows by adding a new build step. For more details, see the Debug your GitHub Actions
by using ssh.

By creating a PR for the edited ci.yml file, this will the CI to run their tests. There are two ways to navigate to CIs.

1) Go to the PR and click the checks tab

2) Go to the Actions tab within the main Hyperledger Cactus Repository

Click on the CI Cactus workflow. There should be a new job you’ve created be listed underneath the build
(ubuntu-20.04) jobs. Click on the the new job (what’s you’ve named your build) and locate the SSH Session within
the Setup Upterm Session dropdown. Copy the SSH command that start with ssh and ends in .dev (ex. ssh
**********:***********@uptermd.upterm.dev). Open your OS and paste the SSH command script in order to be-
gin an upterm session.

2.5. Getting into the SSH connection 17

https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://github.com/marketplace/actions/debugging-with-ssh
https://github.com/marketplace/actions/debugging-with-ssh

Hyperledger Cactus, Release 1.0.0-rc.3

18 Chapter 2. Hyperledger Cactus Build Instructions

CHAPTER

THREE

EXAMPLES

This section shows the sample applications that are provisioned by the Hyperledger Cactus.

3.1 Hyperledger Cactus Example - Supply Chain App

3.1.1 Usage

1. Execute the following from:

docker run \
--rm \
--privileged \
-p 3000:3000 \
-p 3100:3100 \
-p 3200:3200 \
-p 4000:4000 \
-p 4100:4100 \
-p 4200:4200 \
ghcr.io/hyperledger/cactus-example-supply-chain-app:2021-09-08--docs-1312

2. Observe the example application pulling up in the logs

1. the test ledger containers,

2. a test consortium with multiple members and their Cactus nodes

3. Wait for the output to show the message INFO (api-server): Cactus Cockpit reachable http://0.
0.0.0:3100

4. Visit http://0.0.0.0:3100 in your web browser with Javascript enabled

3.1.2 Building and running the container locally

Change directories to the project root

Build the dockar image and tag it as "scaeb" for supply chain app example backend
DOCKER_BUILDKIT=1 docker build -f ./examples/supply-chain-app/Dockerfile . -t scaeb

Run the built image with ports mapped to the host machine as you see fit
The --privileged flag is required because we use Docker-in-Docker for pulling

(continues on next page)

19

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

up ledger containers from within the container in order to have the example
be completely self-contained where you don't need to worry about running
multiple different ledgers jus this one container.
docker run --rm -it --privileged -p 3000:3000 -p 3100:3100 -p 3200:3200 -p 4000:4000 -p␣
→˓4100:4100 -p 4200:4200 scaeb

3.1.3 Running the Example Application Locally

Make sure you have all the dependencies set up as explained in BUILD.md

On the terminal, issue the following commands:

1. npm run install-yarn

2. yarn configure

3. yarn start:example-supply-chain

3.1.4 Debugging the Example Application Locally

On the terminal, issue the following commands (steps 1 to 6) and then perform the rest of the steps manually.

1. npm run install-yarn

2. yarn configure

3. yarn build:dev

4. cd ./examples/supply-chain-app/

5. yarn --no-lockfile

6. cd ../../

7. Locate the .vscode/template.launch.json file

8. Within that file locate the entry named "Example: Supply Chain App"

9. Copy the VSCode debug definition object from 2) to your .vscode/launch.json file

10. At this point the VSCode Run and Debug panel on the left should have an option also titled "Example:
Supply Chain App" which

20 Chapter 3. Examples

CHAPTER

FOUR

GOVERNANCE

Hyperledger Cactus is managed under an open governance model as described in the Hyperledger charter. Cactus is
led by a set of maintainers, who can be found in the MAINTAINERS.md file.

Maintainers

Cactus is led by the project’s maintainers. The maintainers are responsible for reviewing and merging all patches
submitted for review, and they guide the overall technical direction of the project within the guidelines established by
the Hyperledger Technical Steering Committee (TSC).

Becoming a Maintainer

The project’s maintainers will, from time-to-time, consider adding or removing a maintainer. An existing maintainer
can submit a change set to the MAINTAINERS.md file. A nominated contributor may become a maintainer by a three-
quarters approval of the proposal by the existing maintainers. Once approved, the change set is then merged and the
individual is added to (or alternatively, removed from) the maintainers group.

Maintainers may be removed by explicit resignation, for prolonged inactivity (3 or more months), or for some infraction
of the code of conduct or by consistently demonstrating poor judgement. A maintainer removed for inactivity should
be restored following a sustained resumption of contributions and reviews (a month or more) demonstrating a renewed
commitment to the project. We require that maintainers that will be temporarily inactive do so “gracefully” and update
other maintainers on their status and time availability rather than appearing to “fall off the face of the earth.”

Releases

A majority of the maintainers may decide to create a release of Cactus. Any broader rules of Hyperledger pertaining
to releases must be followed. Once the project is mature, there will be a stable LTS (long term support) release branch,
as well as the main branch for upcoming new features.

Making Feature/Enhancement Proposals

Code changes that are either bug fixes, direct and small improvements, or things that are on the roadmap (see below) can
be issued as PRs in a relatively quick time period, although we recommend creating a Github ticket to track even bugs
and small improvements. For more substantial changes, however, a feature/enhancement proposal is required. These
proceed through the approval process like typical PRs, and require the same “2 + 1” approval policy for acceptance.

In particular, all contributors to the project should have enough time to voice an opinion on feature/enhancement
proposals before they are accepted. So the maintainers will determine some “comment period” between proposal
submission and acceptance so that contributors have enough time to voice their opinions.

Significant changes can be marked as such via the predefined label with the same name. This is a tool that helps
maintainers identify the most important issues/discussions to be had at any given time through the GitHub web interface.

To easily access the list of significant changes, navigate to the label: https://github.com/hyperledger/cactus/labels/Significant_Change

We also recommend reading our CONTRIBUTING.md file (https://github.com/hyperledger/cactus/blob/main/CONTRIBUTING.md)
for more information about contributing.

Approving Pull Requests

21

Hyperledger Cactus, Release 1.0.0-rc.3

Maintainers designated for review are required to review PRs in a timely manner (all circumstances considered, of
course). Any pull request must be reviewed by at least two maintainers, and if a PR is submitted by a maintainer, these
two reviewers must be different from the original submitter.

The technical requirements for submitting/approving/merging pull requests are further detailed in the CONTRIBUT-
ING.md file where it is laid out in detail how to ensure git commit graph tidiness.

Reviewing Pull Requests

We are strongly committed to processing pull requests from everyone in a fair manner meaning that pull requests are
to be reviewed in order of submission. Reviewing PRs in order of submission does not guarantee nor necessitate
accepting/merging said PRs in order of submission since some PRs may require lengthy feedback loops while others
may pass the muster without any change requests or feedback at all, depending on the nature of the change being
proposed. Security related pull requests may be fast tracked even against the “in order of submission” principle if it
appears that a vulnerability makes a pull request a time sensitive issue where the sooner we propagate a fix the better
it is.

Maintainers Meeting

The maintainers hold regular maintainers meetings, which are open to everyone. The purpose of the maintainers
meeting is to plan for and review the progress of releases, and to discuss the technical and operational direction of the
project.

Please see the wiki for maintainer meeting details.

One point to mention about meetings is that new feature/enhancement proposals as described above should be presented
to a maintainers meeting for consideration, feedback, and acceptance.

Roadmap

The Cactus maintainers are required to maintain a roadmap. There is a technical roadmap, with all of the issues as
they directly relate to code, and a more public-friendly roadmap that anyone can digest. The required features to be
implemented will be maintained as issues at the official github repository of Cactus with tag string ‘for current release’
or ‘for future release’. The task which is not volunteered to work, will be dispatched to specific contributors following
consensus among the majority of maintainers.

The technical roadmap is implicitly derived from the Github “milestones” feature. To access the list of milestones for
Cactus use this link: https://github.com/hyperledger/cactus/milestones

Communications

We use the Cactus email list for long-form communications and RocketChat for short, informal announcements and
other communications. We encourage all communication, whenever possible, to be public and in the clear (i.e. rather
than sending an email directly to a person or two, send it out to the whole list if it pertains to the project).

Future Changes

The governance of Cactus may change as the project evolves. In particular, if the project becomes large, we will
incorporate tiered maintainership, with top-level maintainers, subprojects, subproject maintainers, release managers,
and so forth. We emphasize that this document is intended to be “living” and will be updated periodically.

We require that changes to this document require a three-quarters approval of the existing maintainers. Note that this
may also be changed in the future if deemed necessary.

Attribution

This document is based on the Hyperledger Fabric governance document, with some substantial changes.

22 Chapter 4. Governance

CHAPTER

FIVE

CODE OF CONDUCT GUIDELINES

Please review the Hyperledger Code of Conduct before participating and abide by these community standards.

23

https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct

Hyperledger Cactus, Release 1.0.0-rc.3

24 Chapter 5. Code of Conduct Guidelines

CHAPTER

SIX

CONTRIBUTING

• Git Know How / Reading List

• PR Checklist - Contributor/Developer

• PR Checklist - Maintainer/Reviewer

• Create local branch

– Directory structure

• Test Automation

– Summary

– Test Case Core Principles

• Working with the Code

– Running/Debugging the tests

∗ Running a single test case

∗ Running all test cases (unit+integration)

∗ Running unit tests only

∗ Running integration tests only

∗ What is npx used for?

∗ What’s the equivalent of npx for Yarn?

∗ Debugging a test case

– All-In-One Docker Images for Ledger Connector Plugins

∗ Test Automation of Ledger Plugins

– Building the API Client(S)

– Adding new dependencies:

– Reload VSCode Window After Adding Dependencies

– On Reproducible Builds

Thank you for your interest to contribute to Hyperledger Cactus! :tada:

First things first, please review the Hyperledger Code of Conduct before participating.

There are many ways to contribute to Hyperledger Cactus, both as a user and as a developer.

As a user, this can include:

25

https://wiki.hyperledger.org/display/HYP/Hyperledger+Code+of+Conduct

Hyperledger Cactus, Release 1.0.0-rc.3

• Making Feature/Enhancement Proposals

• Reporting bugs

As a developer:

• if you only have a little time, consider picking up a “help-wanted” or “good-first-issue” task

• If you can commit to full-time development, then please contact us on our Rocketchat channel to work through
logistics!

6.1 Git Know How / Reading List

This section is for you if you do not know your way around advanced git concepts such as

• rebasing (interactive or otherwise)

• splitting commits/PRs

• when to use and not to use force push

A word on the controversial topic of force pushes: In many git guides you will read that force push is basically forbidden.
This is true 99% of the time, BUT if you are the only person working on a branch (which is most of time true for a
feature/fix branch of yours that you are planning to submit as a PR) then force pushing is not just allowed but necessary to
avoid messy git commit logs. The question you need to ask yourself before force pushing is this: Am I going to destroy
someone else’s work on the remote branch? If nobody else is working on the branch then the answer is of course no
and force push can be used safely. If others are working with you on the branch on the other hand, it is considered
polite to ask and warn them in advance prior to force pushing so that they can take the necessary precautions on their
side as well.

A handy tool to avoid destroying other’s work accidentally is the new(ish) git feature called
--force-with-lease: Using git push --force-with-lease instead of vanilla --force is highly recom-
mended: https://softwareengineering.stackexchange.com/a/312710

The rustlang documentation has an excellent write-up and additional links on pretty much everything you need to know.
The only difference between their PR requirements and Cactus’ is that we do encourage people referencing github issues
in commit messages. Quoting the most relevant parts below (and thanks to the Rust maintainers for this).

Pull requests are the primary mechanism we use to change Rust. GitHub itself has some great docu-
mentation on using the Pull Request feature. We use the “fork and pull” model described here, where
contributors push changes to their personal fork and create pull requests to bring those changes into the
source repository.

Please make pull requests against the main branch.

Rust follows a no merge policy, meaning, when you encounter merge conflicts you are expected to always
rebase instead of merge. E.g. always use rebase when bringing the latest changes from the main branch to
your feature branch. Also, please make sure that fixup commits are squashed into other related commits
with meaningful commit messages.

GitHub allows closing issues using keywords. This feature should be used to keep the issue tracker tidy.

Source: https://github.com/rust-lang/rust/blob/53702a67e2ae8a404169a0329f6a38d73bf7494d/CONTRIBUTING.md#pull-
requests

Further reading:

• https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-collaborative-
development-models

• https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests

26 Chapter 6. Contributing

https://github.com/hyperledger/cactus/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=
https://github.com/hyperledger/cactus/issues/new?assignees=&labels=bug&template=bug_report.md&title=
https://github.com/hyperledger/cactus/labels/help%20wanted
https://github.com/hyperledger/cactus/labels/good%20first%20issue
https://chat.hyperledger.org/channel/cactus

Hyperledger Cactus, Release 1.0.0-rc.3

6.2 PR Checklist - Contributor/Developer

To avoid issues in the future, do not install dependencies globally. Ensure all dependencies are kept self-
contained.

1. Fork hyperledger/cactus via Github UI

• If you are using the Git client on the Windows operating system, you will need to enable long paths for git
which you can do in PowerShell by executing the command below. To clarify, this may also apply if you
are using any Git GUI application on Windows such as Github Desktop or others.

git config --global core.longpaths true

2. Clone the fork to your local machine

3. (Optional) Create local branch for minimizing code conflicts when you want to contribute multiple changes
regarding different issues in parallel.

4. Complete the desired changes and where possible test locally

1. You can run the full CI suite on Mac/Linux/WSL by running the script at ./tools/ci.sh

2. If you do not have your environment set up for running bash scripts, do not worry, all pull requests will
automatically have the same script executed for it when opened. The only downside is the slower feedback
loop.

5. Make sure you have set up your git signatures

1. Note: Always sign your commits using the git commit -S

2. For more information see here

6. Think about/decide on what your commit message will be.

1. The commit message syntax might be hard to remember at first so you we invite you to use the npm run
commit command which upon execution presents you with a series of prompts that you can fill out and
have your input validated in realtime, making it impossible (or at least much harder) to produce an invalid
commit message that the commit lint bot on Github will flag with an error.

1. The use of this tool described above is entirely optional in case you need a crutch.

2. Note that running the npm run commit command will also attempt to perform the actual commit at
the end unless you kill the process with Ctrl + C or whatever is your terminal’s shortcut for the same
action.

3. The npm run commit command will also attempt to sign the produced commit so make sure that it
is set up properly prior to using it.

7. Commit your changes

1. Make sure your commit message follows the formatting requirements (details above) and here: Conven-
tional Commits syntax; this aids in release notes generation which we intend to automate

2. Be aware that we are using git commit hooks for the automation of certain mundane tasks such as applying
the required code style and formatting so your code will be wrapped at 80 characters each line automatically.
If you wish to see how your changes will be altered by the formatter you can run the npm run prettier
command from a terminal or install an IDE extension for the Prettier tool that can do the same (VSCode
has one that is known to work).

8. Ensure your branch is rebased onto the upstream main branch where upstream is fancy git talk for the main
Cactus repo on Github (the one you created your fork from).

6.2. PR Checklist - Contributor/Developer 27

https://github.com/hyperledger/cactus
https://gist.github.com/tkuhrt/10211ae0a26a91a8c030d00344f7d11b
https://www.conventionalcommits.org/en/v1.0.0-beta.4/#specification
https://www.conventionalcommits.org/en/v1.0.0-beta.4/#specification

Hyperledger Cactus, Release 1.0.0-rc.3

1. Do not duplicate your pull request after it has been reviewed. Duplication here means closing the existing
PR and then opening a brand new one which does not contain the review history anymore. If you encounter
issues with version control that you do not know how to solve the maintainers will be happy to assist to
ensure that you do not need to open a new pull request from scratch.

1. The only exception from the rule above is if you mistakenly named your branch to contain special
characters and somehow ended up in a state where it has become impossible to push changes to the
remote due to this (which has happened before with branch names like refactor(core-api): x
that had to be renamed to refactor-core-api-x and then a new PR had to be created in that case
because GitHub does not let you rename the remote branch that your pull request is tied to)

2. If you are having trouble, there are many great resources out there (so we will not write another here).

1. If you are having trouble locating a suitable guide specifically on the mechanics of rebasing, we can
recommend this one. Thanks to Rafael for the link!

2. If you went through that tutorial and still not quite sure what’s up, give this one a shot as well:
https://about.gitlab.com/blog/2020/11/23/keep-git-history-clean-with-interactive-rebase/

3. If merge conflicts arise, you must fix these at rebase time since omitting this step does not magically make
the conflicts go away, just pushes it over the fence to the maintainer who will attempt to merge your pull
request at a later point in time.

4. If the above happens, at that point said maintainer will most likely ask you (if not already) to perform the
rebase anyway since as the author of a change you are best positioned to resolve any conflicts on the code
level. Occassionally maintainers may do the merge/conflict resolution themselves, but do not count on this
nor try to make a habit out of relying on the potential kindness.

5. After successful rebasing, take another look at your commit(s). Ideally there should be just one in each pull
request, but also on the other hand each commit should be as small, simple and self contained as possible,
so there can be cases where it makes sense to submit a PR with multiple commits if for example you also
had to change something in the test tooling while implementing a feature (in which case there could be a
commit for the feature itself and another for the necessary changes to the test tooling package). What we
respectfully ask though is that you try to avoid these situations and submit most of your PRs with a single,
self contained commit that does not touch multiple things. This significantly reduces the cognitive load
required to review the changes which in turn makes everyone happier: the maintainers will have an easier
job reviewing, which means they’ll be doing it faster which will (probably) cause you joy in turn.

9. Push your changes to your main (or whatever you named your feature branch, that is entirely up to you at the end
of the day)

10. Initiate a pull request from your fork to the base repository

11. Remember: Opening a pull request is like saying “Hey maintainers, I have this change finalized and ready for
you to spend time on reviewing it.” The word finalized here is understood to imply that you are not planning
on doing any more changes on the branch apart from when being asked to by the reviewers.

12. It is perfectly acceptable to open a pull request and mark it as draft (a GitHub feature) which then signals to
the maintainers that if they have time, they are welcome to look at the change, but it may or may not be in its
final form yet so you are not responsible for potential loss of time on their end if the review has to be performed
multiple times on account of changes. Once you promote your draft PR to a real one, the comments from the
point above apply however.

13. If your pull request contains a significant change, we recommend that you apply the similarly named github label
on in it as well. It is okay if you do not do this, if we detect that the change is indeed significant, we will apply the
label. If you do it in advance however, it will probably speed up the proceedings by removing one communication
roundtrip from the review process of your pull request.

14. Await CI, DCO & linting quality checks, as well as any feedback from reviewers

28 Chapter 6. Contributing

https://thoughtbot.com/blog/git-interactive-rebase-squash-amend-rewriting-history

Hyperledger Cactus, Release 1.0.0-rc.3

15. If you need to update your pull request either because you discovered an issue or because you were asked to do
so we ask that you:

16. try to add the change in a way that does not produce additional commits on the PR but instead do an git commit
--amend --signoff on your local branch and then a force push to the remote branch of yours (the PR essen-
tially). Again, if the change you are doing does not fit within any one of the existing commits of your PR, then it
is justified to add a new commit and this is up to your discretion (maintainers may respectfully ask you to squash
if they see otherwise)

17. The rule of thumb for any and all things in git/Cactus is to maintain a clean, tidy commit log/history that enables
everyone to easily look up changes and find accurate answers to the basic questions of Who? / What? / When
/ Why?. If you have ever been in a situation when you tried to figure out the original point a bug was introduced
(and tried to figure out why the offending change was made in the first place) and the git blame just lead you to a
10 megabyte large patch with the message ‘merge xyz’, then you know exactly what it is we are trying to avoid
here. :-)

6.3 PR Checklist - Maintainer/Reviewer

Ensure all the following conditions are met (on top of you agreeing with the change itself)

1. All automated checks that are not explicitly called out here are also passing/green.

2. Branch is rebased onto main and there are no dangling/duplicate commits.

3. Commits appear simple and self contained. Simple is always relative to the mangitude of the change itself of
course. A 1k line change can still be simple if all it does is rename some commonly used variable in each place
its being used.

4. If the contributors are having trouble with git basic functionality such as rebasing / force pushing, DCO, do your
best to help them out, when in doubt feel free to reach out to Peter (who is the one insisting an all these git rules
so he deserves to be the primary contact for all git related issues).

1. Remember that we want to foster a welcoming community so if someone is new to git try to be extra patient
with them on this front.

5. Ensure the commit messages are according to the standard format.

1. Remember that if you select ‘squash’ on the Github UI when accepting the pull request, Github will (by
default) offer up the title of the pull request as the new commit message for your squash commit. This is
not good unless the title happens to be a valid commit message, but in the likely event of it not being as
such, you must take special care to type in a valid commit message right there and then on the Github UI.

2. To avoid the hassle/potential issues with the above, it is recommended that you always use ‘rebase’ when
accepting a pull request even if there are multiple commits that you’d otherwise like to see squashed.

3. If you are adamant that you do not want to merge a PR with multiple commits, that is completely under-
standable and fair game. The recommended approach there is to ask the contributor to break the pull request
up to multiple pull requests by doing an interactive rebase on their branch and cherry picking/re-ordering
things accordingly. This is a fairly advanced git use case so you might want to help them out with it (or ask
Peter who is the one constantly nagging everyone about these git rules. . .)

To protect the Hyperledger Cactus source code, GitHub pull requests are accepted from forked repositories only. There
are also quality standards identified and documented here that will be enhanced over time.

6.3. PR Checklist - Maintainer/Reviewer 29

Hyperledger Cactus, Release 1.0.0-rc.3

6.4 Create local branch

Whenever you begin work on a new feature or bugfix, it’s important that you create a new branch.

1. Clone your fork to your local machine

2. Setup your local fork to keep up-to-date (optional)

Add 'upstream' repo to list of remotes
git remote add upstream https://github.com/hyperledger/cactus.git

Verify the new remote named 'upstream'
git remote -v

Checkout your main branch and rebase to upstream.
Run those commands whenever you want to synchronize with main branch
git fetch upstream
git checkout main
git rebase upstream/main

3. Create your branch.

Checkout the main branch - you want your new branch to come from main
git checkout main

Create a new branch named `<newfeature>` (give simple informative name)
git branch <newfeature>

4. Checkout your branch and add/modify files.

git checkout <newfeature>
git rebase main
Happy coding !

5. Commit changes to your branch.

Commit and push your changes to your fork
git add -A
git commit -s -m "<type>[optional scope]: <description>"
git push origin <newfeature>

6. Once you’ve committed and pushed all of your changes to GitHub, go to the page for your fork on GitHub, select
your development branch, and click the pull request button.

7. Repeat step 3 to 6 when you need to prepare posting new pull request.

NOTE: Once you submitted pull request to Cactus repository, step 6 is not necessary when you made further changes
with git commit --amend since your amends will be sent automatically.

NOTE: You can refer original tutorial ‘GitHub Standard Fork & Pull Request Workflow’

30 Chapter 6. Contributing

https://gist.github.com/Chaser324/ce0505fbed06b947d962

Hyperledger Cactus, Release 1.0.0-rc.3

6.4.1 Directory structure

Whenever you begin to use your codes on Hyperledger Cactus, you should follow the directory strecture on Hyperledger
Cactus. The current directory structure is described as the following:

• contrib/ : Contributions from each participants, which are not directly dependent on Cactus code.

– Fujitsu-ConnectionChain/

– Accenture-BIF/

• docs/

– API/

∗ business-logic-plugin.md

∗ ledger-plugin.md

∗ routing-interface.md

• examples/

– example01-car-trade/

∗ src/

• plugins/

– business-logic-plugin/

∗ lib/ : libraries for building Business Logic Plugin

– ledger-plugin/ : Codes of Ledger Plugin

∗ (ledger-name)/ : Including the ledger name (e.g. Ethereum, Fabric, . . .)

· verifier/

· src/ : Source codes of Verifier on Ledger Plugin

· unit-test/ : Unit test codes of Verifier on Ledger Plugin (single driver / driver and docker env / . . .)

· validator/

· src/ : Source codes of Validator on Ledger Plugin

· unit-test/ : Unit test codes of Validator on Ledger Plugin (single driver / driver and docker env /
. . .)

– routing-interface/

• whitepaper/

• test/

– docker-env/

– kubernetes-env/

6.4. Create local branch 31

Hyperledger Cactus, Release 1.0.0-rc.3

6.5 Test Automation

Mantra: Testable code is maintainable code

6.5.1 Summary

We are all about automating the developer flow wherever possible and a big part of this is automated testing of course.

Whenever contributing a change it is important to have test coverage for the specific change that you are making. This
is especially important for bugs and absolutely essential for security related changes/fixes.

Writing testable code is very important to us as not doing so can (and will) snowball into an avalanche of technical debt
that will eventually destroy code quality and drive people away who would otherwise be happy to contribute and use
the software. So, we want to make sure that does not happen with all this.

This also means that occassionally, when making a change that looks simple on the surface you may find that the
reviewer of your pull request asks you to do additional, seemingly unrelated changes that have nothing to do with the
actual feature/bug that you just implemented/fixed, but instead are designed to ensure that tests can be written for it or
for related code.

This can feel like a chore (because it is) but we respectfully ask everyone to try their best in accomodating this because
it really helps steering the ship on the long run.

One of the simplest examples for the above is when you have a class that does something, anything, and it depends on
some shared resource to achieve it. The shared resource can be the file system or a network port that is open for TCP
connections for example. You can implement your class hardcoding the port number and functionally it will be correct
(if you did that part right) BUT if your class does not allow for the customization of said port through the constructor
or a setter method, then one of our more obsessive maintainers (like Peter) will immediately be onto you asking for a
change so that the port can be customized at runtime, allowing test cases to pass in port 0 that makes the test executable
in parallel with other tests without being flaky.

If you oppose this idea, said maintainers will happily refer you to this writing or conjure up an entirely new essay right
there on the pull request.

6.5.2 Test Case Core Principles

There are other principles specific per unit and integration tests, but the list below applies to all tests regardless of their
nature.

All test cases must be...

• Self contained programs that can be executed on their own if necessary

– This ensures that if you are iterating on a single test case while trying to make it pass, you will always have
the freedom to run just that one test instead of running the full suite of which the execution time will grow
rapidly as we add test coverage, so, better nip that in the bud with this principle.

• Excluded from the public API surface of the package they are in by ensuring that the test classes/types/interfaces
are NOT exported through the public-api.ts file of that particular package.

– The only exception from this is if a package is itself designed for tests for which a delightful example is
the test-tooling package which as the name suggests is entirely designated for providing utilities for
writing tests and therefore in the case of this package it is allowed and even expected that it will expose test
related classes/types in it’s public API surface. Do note however that indirectly the principle still applies,
meaning that any package must not depend on the test-tooling package as an npm dependency but
rather it must declare it as a devDependency in the relevant section of the package.json file.

• Compatible with the TestAnythingProtocol

32 Chapter 6. Contributing

https://testanything.org/

Hyperledger Cactus, Release 1.0.0-rc.3

– The NodeJS implementation of said protocol is in the node-tap npm package:

– Assertions API of Node TAP

– Simplest possible test case:

const test, { Test } = require("tape");
import * as publicApi from "../../../main/typescript/public-api";

test("Module can be loaded", (t: Test) => {
t.ok(publicApi);
t.end(); // yaay, test coverage

});

– An end to end test case showcasing everything in action that is being preached in this document about test
automation

• Focus/verify a single bug-fix/feature/etc.

• Clearly separated from non-test (aka main) source code. This means in practice that we ask that your test cases
are either in the

1. ./src/test/... tree of the package that you are testing OR

2. your test cases are in the ./src/test/... tree (yes same name) BUT in an entirely separate package if
the dependencies necessitate so. An example to when you would need a separate testing package is if you
are developing a ledger plugin that has REST API endpoints shipping with it and you wish to verify in a
test that the plugin can be loaded to the ApiServer and then called via the web service/SDK. In this case,
you cannot place your test case in the ledger plugin’s package because you want to avoid having to pull
in the API server as a dependency of your ledger plugin package (to ensure that there will be no circular
dependencies).

• Executable with unlimited parallelism (so if I have a 128 test cases and run all of them in parallel on my new 128
CPU core computer, then every single test case runs at the same time)

– This is important because it weeds out flakyness and hardcoded references to shared resources (Remember
the rant about network ports in the previous section?)

– BUT it is also very important because we (as in humanity) spent the last decade making the average CPUs
ship with more and more cores as increasing frequency failed in the late 2000s as a performance increasing
strategy.

What this means is that to utilize the average consumer laptop that most people will have for development,
you will need your test cases to run in parallel which will save time for everyone working on the code
and faster turnaround times make for a better developer experience which makes for a happier community
around our open source project. It’s all connected. ;-)

• Test cases don’t depend on code outside of the ./src/* directory trees of the packages.

– Do not depend on any of the example code in your test cases.

– If you need to import code that is not JS/JSON/TS you can still do so via the Typescript compiler’s relevant
feature that allows importing arbitrary files.

6.5. Test Automation 33

https://node-tap.org/docs/api/asserts/

Hyperledger Cactus, Release 1.0.0-rc.3

6.6 Working with the Code

There are additional details about this in the BUILD.md file in the project root as well.

We use Lerna for managing the monorepo that is Cactus.

We heavily rely on Docker for testing the ledger plugins.

6.6.1 Running/Debugging the tests

Make sure to have the build succeed prior to attempting to run the tests. If you just checked out the project, it is best
to just to just run the CI script which will do a full build and run all tests for you. If it fails you can open a bug in the
issue tracker.

Assuming you have built the sources, below are the different methods to run the tests:

Running a single test case

You execute unit and integration tests in the same way, but here are examples for both them separately anyway:

• An integration test:

npx tap --ts --timeout=600 packages/cactus-test-plugin-consortium-manual/src/test/
→˓typescript/integration/plugin-consortium-manual/get-consortium-jws-endpoint.test.
→˓ts

• A unit test:

npx jest packages/cactus-common/src/test/typescript/unit/objects/get-all-method-
→˓names.test.ts

Running all test cases (unit+integration)

npm run test:all

Running unit tests only

npm run test:unit

Running integration tests only

npm run test:integration

34 Chapter 6. Contributing

https://blog.npmjs.org/post/186494959890/monorepos-and-npm

Hyperledger Cactus, Release 1.0.0-rc.3

What is npx used for?

npx is a standard top level binary placed on the path by NodeJS at installation time. We use it to avoid having to place
every node module (project dependencies) on the OS path or to install them globally (npm install some-pkg -g)

Read more about npx here: https://blog.npmjs.org/post/162869356040/introducing-npx-an-npm-package-runner

What’s the equivalent of npx for Yarn?

Yarn itself. E.g. npx lerna clean becomes yarn lerna clean.

Debugging a test case

Open the .vscode/template.launch.json file and either copy it with a name of launch.json (if you don’t already
have such a file) or just cherry pick the example Visual Studio Code debug tasks that you’d like to use. For debugging
a single test case, you need the debug task from the template launch.json file that is called TAP: Current TS Test
File. Prior to running that debug task you must have your VSCode editor opened to the test file that you wish to run.
Breakpoints will work as long as you are debugging code in the same package.

Source map support is partial at this point but actively being worked on.

6.6.2 All-In-One Docker Images for Ledger Connector Plugins

If you are working on a new ledger connector you’ll need an all-in-one docker image as well, which will allow the
expected level of test automation. If your chosen ledger’s maintainers provide an adequate docker image, then you
might not need to develop this yourself, but this is rarely the case so YMMV.

To see an existing set of examples for besu and quorum images take a peek at the tools/docker/
besu-all-in-one and tools/docker/quorum-all-in-one folders. These produce the ghcr.io/hyperledger/
cactus-besu-all-in-one and ghcr.io/hyperledger/cactus-quorum-all-in-one images respectively. Both
of these are used in the test cases that are written for the specific ledger connector plugins at:

• packages/cactus-test-plugin-ledger-connector-quorum/src/test/typescript/integration/
plugin-ledger-connector-quorum/deploy-contract/deploy-contract-via-web-service.test.
ts

• packages/cactus-plugin-ledger-connector-besu/src/test/typescript/integration/
plugin-ledger-connector-besu/deploy-contract/deploy-contract-from-json.test.ts

The specific classes that utilize the all-in-one images can be found in the test-tooling package under these paths:

• packages/cactus-test-tooling/src/main/typescript/besu/besu-test-ledger.ts

• packages/cactus-test-tooling/src/main/typescript/quorum/quorum-test-ledger.ts

Test Automation of Ledger Plugins

Ledger plugin tests are written the same way as any other test (which is difficult to achieve, but we thrive to get it done).

The only difference between a ledger connector plugin test case and any unit test is that the ledger connector plugin’s
test case will pull up a docker container from one of the all-in-one images that we maintain as part of Cactus and
then use that all-in-one-* container to verify things such as the ability of the ledger connector plugin to deploy a
contract to said ledger.

As a generic best practice, the test cases should never re-use any all-in-one ledger container for the execution of
multiple test cases because that will almost surely lead to flaky/unstable test cases over the long run and needless

6.6. Working with the Code 35

Hyperledger Cactus, Release 1.0.0-rc.3

complexity, ordering dependencies and so on. It is recommended that if you have two test cases for a ledger connector
plugin, they both pull up a newly created container from scratch, execute the test scenario and then tear down and delete
the container completely.

An example for a ledger connector plugin and it’s test automation implemented the way it is explained above:
packages/cactus-test-plugin-ledger-connector-quorum/src/test/typescript/integration/
plugin-ledger-connector-quorum/deploy-contract/deploy-contract-via-web-service.test.ts

This test case is also an example of how to run an ApiServer independently with a single ledger plugin
which is how the test case is set up to begin with.

Another option if you want to perform some tests manually is to run the API server with a configuration of your choice:

Starting from the project root directory

chmod +x ./packages/cactus-cmd-api-server/dist/lib/main/typescript/cmd/cactus-api.js

./packages/cactus-cmd-api-server/dist/lib/main/typescript/cmd/cactus-api.js --config-
→˓file=.config.json

You can run this test case the same way you would run any other test case (which is also a requirement in itself for each
test case):

npx tap --ts --timeout=600 packages/cactus-test-plugin-ledger-connector-quorum/src/test/
→˓typescript/integration/plugin-ledger-connector-quorum/deploy-contract/deploy-contract-
→˓via-web-service.test.ts

You can specify an arbitrary set of test cases to run in a single execution via glob patterns. Examples of these glob
patterns can be observed in the root directory’s package.json file which has npm scripts for executing all tests with
a single command (the CI script uses these):

"test:all": "tap --ts --jobs=1 --timeout=600 \"packages/cactus-*/src/test/typescript/
→˓{unit,integration}/\"",
"test:unit": "tap --ts --timeout=600 \"packages/cactus-*/src/test/typescript/unit/\"",
"test:integration": "tap --ts --jobs=1 --timeout=600 \"packages/cactus-*/src/test/
→˓typescript/integration/\""

Following a similar pattern if you have a specific folder where your test cases are, you can run everything in that folder
by specifying the appropriate glob patterns (asterisks and double asterisks as necessary depending on the folder being
a flat structure or with sub-directories and tests nested deep within them).

For example this can work as well:

Starting from the project root
cd packages/cactus-test-plugin-ledger-connector-quorum/src/test/typescript/integration/
→˓plugin-ledger-connector-quorum
npx tap --ts --jobs=1 --timeout=600 \"./\"

Be aware that glob patterns need quoting in some operating system’s shell environments and not necessarily
on others. In the npm scripts Cactus uses we quote all of them to ensure a wider shell compatibility.

36 Chapter 6. Contributing

Hyperledger Cactus, Release 1.0.0-rc.3

6.6.3 Building the API Client(S)

You do not need to do anything special to have the API Client sources generated and compiled. It is all part of the npm
run build:dev:backend task which you can run yourself or as part of the CI script (./tools/ci.sh).

The API client code is automatically generated from the respective openapi.json file of each package that exposes
ay web serices (REST/SocketIO/gRPC/etc.) and can be dependend on by other packages where applicable. There’s a
dedicated @hyperledger/cactus-api-client package that is meant to contain common functionality among the
rest of API clients. The concept here is similar to abstract classes and their sub-class implementations.

Each openapi.json produces its own API client via the code generator that also contains relevant model definitions,
such as interfaces describing the request/response bodies of all possible operations and validation constraints as well.

The API clients are designed to be a universal components, meaning that it runs just fine in browser and also NodeJS
environments. This is very important as we do not wish to maintain two (or more) separate API client codebases for
the various platforms and we also want as much of it being generated automatically as possible (currently this is close
to 100%).

6.6.4 Adding new dependencies:

Example:

Adds "got" as a dependency to the cactus common package
Note that you must specify the fully qualified package name as present in
the package.json file
yarn workspace @hyperledger/cactus-common add got --save-exact

You need to know which package of the monorepo will be using the package and then run the yarn workspace
command with an additional parameters specifying the package name and the dependency name. See Yarn Workspaces
Documentation for the official Yarn documentation for further details and examples.

After adding new dependencies, you might need to Reload VSCode Window After Adding Dependencies

Always specify the --save-exact when installing new dependencies to ensure reproducible builds

6.6.5 Reload VSCode Window After Adding Dependencies

If you added a new dependency and VSCode is showing an error when you try to import it, then sometimes the is-
sue is just a matter of nudging VSCode to reload the Typescript definitions from scratch so that it “notices” the new
dependency you just added.

The recommended way of doing this is by hitting the F1 key (or whatever you have bound the command menu to)
and then searching and selecting Developer: Reload Window As a simpler alternative you can also just quit and
relaunch the VSCode application of course.

6.6. Working with the Code 37

https://classic.yarnpkg.com/en/docs/cli/workspace/
https://classic.yarnpkg.com/en/docs/cli/workspace/
https://reproducible-builds.org/

Hyperledger Cactus, Release 1.0.0-rc.3

6.6.6 On Reproducible Builds

As a best practice, any given revision (commit hash) stored in version control should produce the exact same build
artifacts regardless of when or where the build was performed. This can only be achieved if npm dependency versions
are locked down instead of being automatically upgraded by npm (which makes the build time and machine dependent).

Bottom line: Do not use the the ^, ~ and * syntax elements while declaring your npm dependencies.

Further details:

• https://reproducible-builds.org/

• https://spin.atomicobject.com/2016/12/16/reproducible-builds-npm-yarn/

38 Chapter 6. Contributing

CHAPTER

SEVEN

MAINTAINERS

Active Maintainers

Name GitHub Chat
Jonathan Hamilton jonathan-m-hamilton JHamilton
Izuru Sato izuru0 izuru
Peter Somogyvari petermetz peter_somogyvari
Takuma TAKEUCHI takeutak takeutak
Jagpreet Singh Sasan jagpreetsinghsasan jagpreetsinghsasan

39

https://github.com/jonathan-m-hamilton
https://github.com/izuru0
https://github.com/petermetz
https://github.com/takeutak
https://github.com/jagpreetsinghsasan

Hyperledger Cactus, Release 1.0.0-rc.3

40 Chapter 7. Maintainers

CHAPTER

EIGHT

WHITEPAPER

8.1 Hyperledger CactusWhitepaper

8.1.1 Version 0.1 (Early Draft)

8.2 Contributors

Contributors/Reviewers Email
Hart Montgomery hmontgomery@us.fujitsu.com
Hugo Borne-Pons hugo.borne-pons@accenture.com
Jonathan Hamilton jonathan.m.hamilton@accenture.com
Mic Bowman mic.bowman@intel.com
Peter Somogyvari peter.somogyvari@accenture.com
Shingo Fujimoto shingo_fujimoto@fujitsu.com
Takuma Takeuchi takeuchi.takuma@fujitsu.com
Tracy Kuhrt tracy.a.kuhrt@accenture.com
Rafael Belchior rafael.belchior@tecnico.ulisboa.pt

8.3 Document Revisions

Date of Revision Description of Changes Made
February 2020 Initial draft

• 1. Abstract

• 2. Introduction to Blockchain Interoperability

– 2.1 Terminology of Blockchain Interoperability

∗ 2.1.1 Ledger Object Types

∗ 2.1.2 Blockchain Interoperability Types

∗ 2.1.3 Burning or Locking of Assets

– 2.2 Footnotes (Introduction)

• 3. Example Use Cases

– 3.1 Car Trade

41

Hyperledger Cactus, Release 1.0.0-rc.3

– 3.2 Electricity Trade

– 3.3 Supply chain

– 3.4 Ethereum to Quorum Asset Transfer

– 3.5 Escrowed Sale of Data for Coins

– 3.6 Money Exchanges

– 3.7 Stable Coin Pegged to Other Currency

∗ 3.7.1 With Permissionless Ledgers (BTC)

∗ 3.7.2 With Fiat Money (USD)

– 3.8 Healthcare Data Sharing with Access Control Lists

– 3.9 Integrate Existing Food Traceability Solutions

– 3.10 End User Wallet Authentication/Authorization

– 3.11 Blockchain Migration

∗ 3.11.1 Blockchain Data Migration

∗ 3.11.2 Blockchain Smart Contract Migration

∗ 3.11.3 Semi-Automatic Blockchain Migration

• 4. Software Design

– 4.1. Principles

∗ 4.1.1. Wide support

∗ 4.1.2. Plugin Architecture from all possible aspects

∗ 4.1.3. Prevent Double spending Where Possible

∗ 4.1.4 DLT Feature Inclusivity

∗ 4.1.5 Low impact

∗ 4.1.6 Transparency

∗ 4.1.7 Automated workflows

∗ 4.1.8 Default to Highest Security

∗ 4.1.9 Transaction Protocol Negotiation

∗ 4.1.10 Avoid modifying the total amount of digital assets on any blockchain whenever possible

∗ 4.1.11 Provide abstraction for common operations

∗ 4.1.12 Integration with Identity Frameworks (Moonshot)

– 4.2 Feature Requirements

∗ 4.2.1 New Protocol Integration

∗ 4.2.2 Proxy/Firewall/NAT Compatibility

∗ 4.2.3 Bi-directional Communications Layer

∗ 4.2.4 Consortium Management

– 4.3 Working Policies

• 5. Architecture

42 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

– 5.1 Deployment Scenarios

∗ 5.1.1 Production Deployment Example

∗ 5.1.2 Low Resource Deployment Example

– 5.2 System architecture and basic flow

∗ 5.2.1 Definition of key components in system architecture

∗ 5.2.2 Bootstrapping Cactus application

∗ 5.2.3 Processing Service API call

– 5.3 APIs and communication protocols between Cactus components

∗ 5.3.1 Cactus Service API

· Open Endpoints

· Restricted Endpoints

∗ 5.3.2 Ledger plugin API

∗ 5.3.3 Exection of “business logic” at “Business Logic Plugin”

– 5.4 Technical Architecture

∗ 5.4.1 Monorepo Packages

· 5.4.1.1 cmd-api-server

· 5.4.1.1.1 Runtime Configuration Parsing and Validation

· 5.4.1.1.2 Configuration Schema - API Server

· 5.4.1.1.3 Plugin Loading/Validation

· 5.4.1.2 core-api

· 5.4.1.3 API Client

· 5.4.1.4 keychain

· 5.4.1.5 tracing

· 5.4.1.6 audit

· 5.4.1.7 document-storage

· 5.4.1.8 relational-storage

· 5.4.1.9 immutable-storage

∗ 5.4.2 Deployment Diagram

∗ 5.4.3 Component Diagram

∗ 5.4.4 Class Diagram

∗ 5.4.5 Sequence Diagram - Transactions

– 5.5 Transaction Protocol Specification

∗ 5.5.1 Handshake Mechanism

∗ 5.5.2 Transaction Protocol Negotiation

– 5.6 Plugin Architecture

∗ 5.6.1 Ledger Connector Plugins

8.3. Document Revisions 43

Hyperledger Cactus, Release 1.0.0-rc.3

· 5.6.1.1 Ledger Connector Besu Plugin

· 5.6.1.2 Ledger Connector Fabric Plugin

· 5.6.1.3 Ledger Connector Quorum Plugin

∗ 5.6.2 HTLCs Plugins

· 5.6.2.1 HTLC-ETH-Besu Plugin

· 5.6.2.2 HTLC-ETH-ERC20-Besu Plugin

∗ 5.6.3 Identity Federation Plugins

· 5.6.3.1 X.509 Certificate Plugin

∗ 5.6.4 Key/Value Storage Plugins

∗ 5.6.5 Serverside Keychain Plugins

∗ 5.6.6 Manual Consortium Plugin

∗ 5.6.7 Test Tooling

• 6. Identities, Authentication, Authorization

– 6.1 Definition of Identities in Cactus

– 6.2 Transaction Signing Modes, Key Ownership

∗ 6.2.1 Client-side Transaction Signing

∗ 6.2.2 Server-side Transaction Signing

– 6.3 Open ID Connect Provider, Identity Provider

– 6.4 Server-side Keychain for Web Applications

• 7. Terminology

• 8. Related Work

• 9. References

• 10. Recommended Reference

8.4 1. Abstract

Blockchain technologies are growing in usage, but fragmentation is a big problem that may hinder reaching critical
levels of adoption in the future.

We propose a protocol and it’s implementation to connect as many of them as possible in an attempt to solve the
fragmentation problem by creating a heterogeneous system architecture 1.

44 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.5 2. Introduction to Blockchain Interoperability

There are two inherent problemsa that have to be solved when connecting different blockchains:

• How to provide a proof of the networkwideb ledger state of a connected blockchain from the outside?

• How can other entities verify a given proof of the state of a connected blockchain from the outside?

The Cactus consortium operates for each connected blockchain a group of validator nodes, which as a group provides
the proofs of the state of the connected ledger. The group of validator nodes runs a consensus algorithm to agree on
the state of the underlying blockchain. Since a proof of the state of the blockchain is produced and signed by several
validator nodesc with respect to the rules of the consensus algorithm, the state of the underlying blockchain is evaluated
networkwide.

The validator nodes are ledger-specific plug-ins, hence a smart contract on the connected blockchain can enable the
ledger-specific functionalities necessary for a validator node to observe the ledger state to finalize a proof. The validator
nodes are easier discovered from the outside than the blockchain nodes. Hence, the benefit of operating the Cactus
network to enable blockchain interoperability relies on the fact that for any cross-blockchain interaction the same type
of validator node signatures can be used. That means, the cross-blockchain interaction can be done canonically with the
validator node signatures in Cactus rather than having to deal with many different ledger-specific types of blockchain
node signatures.

Outside entities (verifier nodes) can request and register the public keys of the validator nodes of a blockchain network
that they want to connect to. Therefore, they can verify the signed proofs of the state of the blockchain since they have
the public keys of the validator nodes. This implies that the verifier nodes trust the validator nodes as such they trust
the Cactus consortium operating the validator nodes.

Figure description: V1, V2, and V3 are validator nodes which provide proofs of the underlying blockchain network
through ledger-specific plug-ins. V1, V2, and V3 run a consensus algorithm which is independent of the consensus
algorithm run by the blockchain network nodes N1, N2, N3, N4, and N5.

8.5.1 2.1 Terminology of Blockchain Interoperability

This section acts as a building block to describe the different flavors of blockchain interoperability. Business use cases
will be built on these simple foundation blocks leveraging a mix of them simultaneously and even expanding to several
blockchains interacting concurrently.

2.1.1 Ledger Object Types

To describe typical interoperability patterns between different blockchains, the types of objects stored on a ledger have
to be distinguished. The following three types of objects stored on a ledger are differentiated as follows:

• FA: Fungible asset (value token/coin) – cannot be duplicated on different ledgers

• NFA: Non-fungible asset – cannot be duplicated on different ledgersd

• D: Data – can be duplicated on different ledgers

Difference between a fungible (FA) and a non-fungible asset (NFA)

A fungible asset is an asset that can be used interchangeably with another asset of the same type, like a currency. For
example, a 1 USD bill can be swapped for any other 1 USD bill. Cryptocurrencies, such as ETH (Ether) and BTC
(Bitcoin), are FAs. A non-fungible asset is an asset that cannot be swapped as it is unique and has specific properties.
For example, a car is a non-fungible asset as it has unique properties, such as color and price. CryptoKitties are NFAs
as well. There are two standards for fungible and non-fungible assets on the Ethereum network (ERC-20 Fungible
Token Standard and ERC-721 Non-Fungible Token Standard).

Difference between an asset (FA or NFA) and data (D)

8.5. 2. Introduction to Blockchain Interoperability 45

Hyperledger Cactus, Release 1.0.0-rc.3

Unicity applies to FAs and NFAs meaning it guarantees that only one valid representation of a given asset exists in the
system. It prevents double-spending of the same token/coin in different blockchains. The same data package can have
several representations on different ledgers while an asset (FA or NFA) can have only one representation active at any
time, i.e., an asset exists only on one blockchain while it is locked/burned on all other blockchains. If fundamental
disagreement persists in the community about the purpose or operational upgrades of a blockchain, a hard fork can
split a blockchain creating two representations of the same asset to coexist. For example, Bitcoin split into Bitcoin
and Bitcoin Cash in 2017. Forks are not addressing blockchain interoperability so the definition of unicity applies in
a blockchain interoperability context. A data package that was once created as a copy of another data package might
divert from its original one over time because different blockchains might execute different state changes on their data
packages.

2.1.2 Blockchain Interoperability Types

Blockchain interoperability implementations can be classified into the following types:

• Ledger transfer:

An asset gets locked/burned on one blockchain and then a representation of the same asset gets released in the other
blockchaine. There are never two representations of the same asset alive at any time. Data is an exception since the same
data can be transferred to several blockchains. There are one-way or two-way ledger transfers depending on whether
the assets can be transferred only in one direction from a source blockchain to a destination blockchain or assets can
be transferred in and out of both blockchains with no designated source blockchain and destination blockchain.

• Atomic swapf:

A write transaction is performed on Blockchain A concurrently with another write transaction on blockchain B. There
is no asset/data/coin leaving any blockchain environment. The two blockchain environments are isolated but, due to
the blockchain interoperability implementation, both transactions are committed atomically. That means either both
transactions are committed successfully or none of the transactions are committed successfully.

• Ledger interactionf:

An actiong happening on Blockchain A is causing an action on Blockchain B. The state of Blockchain A causes state
changes on Blockchain B. There are one-way or two-way ledger interactions depending on whether only the state of
one of the blockchains can affect the state on the other blockchain or both blockchain states can affect state changes on
the corresponding other blockchain.

• Ledger entry point coordination:

This blockchain interoperability type concerns end-user wallet authentication/ authorization enabling read and write
operations to independent ledgers from one single entry point. Any read or write transaction submitted by the client is
forwarded to the corresponding blockchain and then committed/executed as if the blockchain would be operate on its
own.

The ledger transfer has a high degree of interference between the blockchains since the livelihood of a blockchain can
be reduced in case too many assets are locked/burned in a connected blockchain. The ledger interaction has a high
degree of interference between the blockchains as well since the state of one blockchain can affect the state of another
blockchain. Atomic swaps have less degree of interference between the blockchains since all assets/data stay in their
respective blockchain environment. The ledger entry point coordination has no degree of interference between the
blockchains since all transactions are forwarded and executed in the corresponding blockchain as if the blockchains
would be operated in isolation.

Figure description: One-way ledger transfer

Figure description: Two-way ledger transfer

Figure description: Atomic swap

Figure description: Ledger interaction

46 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

Figure description: Ledger entry point coordination

Legend:

Object 1

State of object O1 at the beginning of transaction

State of object O2 at the beginning of transaction

State of object O1 at the end of transaction

State of object O2 at the end of transaction

O1end = Representation of object O1 at the end of transaction in another blockchain

O2end = Representation of object } O2 at the end of transaction in another blockchain

Transaction 1

Transaction 2

T1 = Representation of transaction 1 (T1) in another blockchain

T1 = Representation of transaction 2 (T2) in another blockchain

Event 1

Event 2 depends on O1 or T1 or E1

Transaction 2 depends on O1 or T1 or E1

2.1.3 Burning or Locking of Assets

To guarantee unicity, an asset (NFA or FA) has to be burned or locked before being transferred into another blockchain.
Locked assets can be unlocked in case the asset is retransferred back to its original blockchain, whereas the burning of
assets is an irreversible process. It is worth noting that locking/burning of assets is happening during a ledger transfer
but can be avoided in use cases where both parties have wallets/accounts on both ledgers by using atomic swaps instead.
Hence, most cryptocurrency exchange platforms rely on atomic swaps and do not burn FAs. For example, ordinary
coins, such as Bitcoin or Ethereum, can only be generated by mining a block. Therefore, Bitcoin or Ethereum exchanges
have to rely on atomic swaps rather than two-way ledger transfers because it is not possible to create BTC or ETH on
the fly. In contrast, if the minting process of an FA token can be leveraged on during a ledger transfer, burning/locking
of an asset becomes a possible implementation option, such as in the ETH token ledger transfer from the old PoW
chain (Ethereum 1.0) to the PoS chain (aka Beacon Chain in Ethereum 2.0). Burning of assets usually applies more
to tokens/coins (FAs) and can be seen as a donation to the community since the overall value of the cryptocurrency
increases.

Burning of assets can be implemented as follows:

• Assets are sent to the address of the coinbase/generation transactionh in the genesis block. A coinbase/generation
transaction is in every block of blockchains that rely on mining. It is the address where the reward for mining the
block is sent to. Hence, this will burn the tokens/coins in the address of the miner that mined the genesis block.
In many blockchain platforms, it is proven that nobody has the private key to this special address.

• Tokens/Coins are subtracted from the user account as well as optionally from the total token/coin supply value.

8.5. 2. Introduction to Blockchain Interoperability 47

Hyperledger Cactus, Release 1.0.0-rc.3

8.5.2 2.2 Footnotes (Introduction)

a: There is an alternative approach for an outside entity A to verify the state of a connected blockchain if this connected
blockchain uses Merkle Trees to store its blockchain state. An outside entity A can store the Merkle Tree roots from
the headers of committed blocks of a connected blockchain locally to verify any state claims about the connected
blockchain. Any untrusted entity can then provide a state of the connected blockchain, such as a specific account
balance on the connected blockchain, because the outside entity A can act as a lightweight client and use concepts
like simple payment verification (SPV) to verify that the state claim provided by the untrusted entity is valid. SPV
can be done without checking the entire blockchain history. Polkadot uses this approach in its Relay Chain and the
BTCRelay on the Ethereum blockchain uses this approach as well. Private blockchains do not always keep track of
their state through Merkel trees and signatures produced by nodes participating in such private blockchains are rarely
understood by outside parties not participating in the network. For that reason, the design principle of Cactus is to
rely on the canonical validator node signatures for verifying proofs of blockchain states. Since Cactus should be able
to incorporate any type of blockchain in the future, Cactus can not use the approach based on Merkle Trees.

b: A networkwide ledger view means that all network nodes have to be considered to derive the state of the blockchain
which means that it is not the state of just one single blockchain node.

c: The validator nodes in Cactus have similarities with trusted third-party intermediaries. The terminology trusted
third-party intermediaries, federation schemes, and notary schemes are used when a blockchain can retrieve the state of
another blockchain through these intermediaries. In contrast, the terminology relay is used when a chain can retrieve
the state of another blockchain through reading, writing, or event listening operations directly rather than relying on
intermediaries. This terminology is used in the central Relay Chain in Polkadot and the BTCRelay on the Ethereum
network.

d: There might be use cases where it is desired to duplicate an NFA on different ledgers. Nonetheless, we stick to
the terminology that an NFA cannot be duplicated on a different ledger because an NFA can be represented as data
packages on different ledgers in such cases. Data is a superset of NFAs.

e: In the case of data, the data can be copied from Blockchain A to Blockchain B. It is optional to lock/burn/delete the
data object on Blockchain A after copying.

f: The process in Blockchain A and the process in Blockchain B can be seen to happen concurrently, and consecutively,
in atomic swaps, and ledger interactions, respectively.

g: An action can be either a read transaction or a write transaction performed on Blockchain A or an event that is
emitted by Blockchain A. Some examples of that type of ledger interoperability are as follows:

• Cross-chain oracles which are smart contracts that read the state of another blockchain before acting on it.

• Smart contracts that wait until an event happens on another blockchain before acting on it.

• Asset encumbrance smart contracts which are smart contracts that lock up assets on Blockchain A with unlocking
conditions depending on actions happening in Blockchain B.

h: Alternatively, any address from that assets cannot be recovered anymore can be used. A verifiable proof for the
irreversible property of that address should be given.

8.6 3. Example Use Cases

Specific use cases that we intend to support. The core idea is to support as many use-cases as possible by enabling
interoperability between a large variety of ledgers specific to certain mainstream or exotic use cases.

The following table summarizes the use cases that will be explained in more detail in the following sections. FA, NFA,
and D denote a fungible asset, a non-fungible asset, and data, respectively.

48 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.1 3.1 Car Trade

Use Case Attribute Name Use Case Attribute Value
Use Case Title Car Trade
Use Case TBD
Interworking patterns TBD
Type of Social Interaction TBD
Narrative TBD
Actors TBD
Goals of Actors TBD
Success Scenario TBD
Success Criteria TBD
Failure Criteria TBD
Prerequisites TBD
Comments

8.6.2 3.2 Electricity Trade

Use Case Attribute Name Use Case Attribute Value
Use Case Title Electricity Trade
Use Case TBD
Interworking patterns TBD
Type of Social Interaction TBD
Narrative TBD
Actors TBD
Goals of Actors TBD
Success Scenario TBD
Success Criteria TBD
Failure Criteria TBD
Prerequisites TBD
Comments

8.6. 3. Example Use Cases 49

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.3 3.3 Supply chain

Use Case Attribute Name Use Case Attribute Value
Use Case Title Supply Chain
Use Case TBD
Interworking patterns TBD
Type of Social Interaction TBD
Narrative TBD
Actors TBD
Goals of Actors TBD
Success Scenario TBD
Success Criteria TBD
Failure Criteria TBD
Prerequisites TBD
Comments

50 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.4 3.4 Ethereum to Quorum Asset Transfer

Use
Case
At-
tribute
Name

Use Case Attribute Value

Use
Case
Title

Ethereum to Quorum Escrowed Asset Transfer

Use
Case

1. User A owns some assets on an Ethereum ledger2. User A asks Exchanger to exchange specified
amount of assets on Ethereum ledger, and receives exchanged asset at the Quorum ledger.

Inter-
working
patterns

Value transfer

Type of
Social
Interac-
tion

Escrowed Asset Transfer

Narra-
tive

A person (User A) has multiple accounts on different ledgers (Ethereum, Quorum) and he wishes to
send some assets from Ethereum ledger to a Quorum ledger with considering conversion rate. The sent
asset on Ethereum will be received by Exchanger only when he successfully received converted asset
on Quorum ledger.

Actors 1. User A: The person or entity who has ownership of the assets asscociated with its accounts on ledger.
Goals of
Actors

User A loses ownership of sent assets on Ethereum, but he will get ownnership of exchanged asset
value on Quorum.

Success
Scenario

Transfer succeeds without issues. Asset is available on both Ethereum and Quorum ledgers.

Success
Criteria

Transfer asset on Quorum was successed.

Failure
Criteria

Transfer asset on Quorum was failed.

Prereq-
uisites

1. Ledgers are provisioned2. User A and Exchanger identities established on both ledgers3.
Exchanger authorized business logic plugin to operate the account on Quorum ledger.4.User A has
access to Hyperledger Cactus deployment

Com-
ments

8.6. 3. Example Use Cases 51

Hyperledger Cactus, Release 1.0.0-rc.3

52 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.5 3.5 Escrowed Sale of Data for Coins

W3C
Use
Case
At-
tribute
Name

W3C Use Case Attribute Value

Use
Case
Ti-
tle

Escrowed Sale of Data for Coins

Use
Case

1. User A initiates (proposes) an escrowed transaction with User B2. User A places funds, User B places
the data to a digital escrow service.3. They both observe each other’s input to the escrow service and decide
to proceed.4. Escrow service releases the funds and the data to the parties in the exchange.

Type
of
So-
cial
In-
ter-
ac-
tion

Peer to Peer Exchange

Nar-
ra-
tive

Data in this context is any series of bits stored on a computer: * Machine learning model * ad-tech database
* digital/digitized art * proprietary source code or binaries of software * etc.User A and B trade the data
and the funds through a Hyperledger Cactus transaction in an atomic swap with escrow securing both parties
from fraud or unintended failures.Through the transaction protocol’s handshake mechanism, A and B can
agree (in advance) upon* The delivery addresses (which ledger, which wallet)* the provider of escrow that
they both trust* the price and currencyEstablishing trust (e.g. Is that art original or is that machine learning
model has the advertised accuracy) can be facilitated through the participating DLTs if they support it. Note
that User A has no way of knowing the quality of the dataset, they entirely rely on User B’s description of
its quality (there are solutions to this problem, but it’s not within the scope of our use case to discuss these).

Ac-
tors

1. User A: A person or business organization with the intent to purchase data.2. User B: A person or
business entity with data to sell.

Goals
of
Ac-
tors

User A wants to have access to data for an arbitrary reason such as having a business process that can
enhanced by it. User B: Is looking to generate income/profits from data they have obtained/created/etc.

Suc-
cess
Sce-
nario

Both parties have signaled to proceed with escrow and the swap happened as specified in advance.

Suc-
cess
Cri-
te-
ria

User A has access to the data, User B has been provided with the funds.

Fail-
ure
Cri-
te-
ria

Either party did not hold up their end of the exchange/trace.

Pre-
req-
ui-
sites

User A has the funds to make the purchaseUser B has the data that User A wishes to purchase.User A and
B can agree on a suitable currency to denominate the deal in and there is also consensus on the provider of
escrow.

Com-
ments

Hyperledger Private Data: https://hyperledger-fabric.readthedocs.io/en/release-
1.4/private_data_tutorial.html Besu Privacy Groups: https://besu.hyperledger.org/en/stable/Concepts/Privacy/Privacy-
Groups/

8.6. 3. Example Use Cases 53

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.6 3.6 Money Exchanges

Enabling the trading of fiat and virtual currencies in any permutation of possible pairs.

On the technical level, this use case is the same as the one above and therefore the specific details were
omitted.

8.6.7 3.7 Stable Coin Pegged to Other Currency

W3C
Use
Case
At-
tribute
Name

W3C Use Case Attribute Value

Use
Case
Title

Stable Coin Pegged to Other Currency

Use
Case

1. User A creates their own ledger2. User A deploys Hyperledger Cactus in an environment set up by
them.3. User A implements necessary plugins for Hyperledger Cactus to interface with their ledger for
transactions, token minting and burning.

Type of
Social
Interac-
tion

Software Implementation Project

Narra-
tive

Someone launches a highly scalable ledger with their own coin called ExampleCoin that can consistently
sustain throughput levels of a million transactions per second reliably, but they struggle with adoption
because nobody wants to buy into their coin fearing that it will lose its value. They choose to put in place
a two-way peg with Bitcoin which guarantees to holders of their coin that it can always be redeemed for
a fixed number of Bitcoins/USDs.

Actors User A: Owner and/or operator of a ledger and currency that they wish to stabilize (peg) to other cur-
rencies

Goals
of
Actors

1. Achieve credibility for their currency by backing funds.2. Implement necessary software with minimal
boilerplate code (most of which should be provided by Hyperldger Cactus)

Suc-
cess
Sce-
nario

User A stood up a Hyperledger Cactus deployment with their self-authored plugins and it is possible for
end user application development to start by leveraging the Hyperledger Cactus REST APIs which now
expose the functionalities provided by the plugin authored by User A

Suc-
cess
Criteria

Success scenario was achieved without significant extra development effort apart from creating the Hy-
perledger Cactus plugins.

Failure
Criteria

Implementation complexity was high enough that it would’ve been easier to write something from scratch
without the framework

Prereq-
uisites

* Operational ledger and currency*Technical knowledge for plugin implementation (software engineer-
ing)

Com-
ments

Sequence diagram omitted as use case does not pertain to end users of Hyperledger Cactus itself.

54 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

3.7.1 With Permissionless Ledgers (BTC)

A BTC holder can exchange their BTC for ExampleCoins by sending their BTC to ExampleCoin Reserve Wallet
and the equivalent amount of coins get minted for them onto their ExampleCoin wallet on the other network.

An ExampleCoin holder can redeem their funds to BTC by receiving a Proof of Burn on the ExampleCoin ledger and
getting sent the matching amount of BTC from the ExampleCoin Reserve Wallet to their BTC wallet.

3.7.2 With Fiat Money (USD)

Very similar idea as with pegging against BTC, but the BTC wallet used for reserves gets replaced by a traditional bank
account holding USD.

8.6. 3. Example Use Cases 55

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.8 3.8 Healthcare Data Sharing with Access Control Lists

W3C
Use
Case
At-
tribute
Name

W3C Use Case Attribute Value

Use
Case
Title

Healthcare Data Sharing with Access Control Lists

Use
Case

1. User A (patient) engages in business with User B (healthcare provider)2. User B requests permission
to have read access to digitally stored medical history of User A and write access to log new entries in said
medical history.3.User A receives a prompt to grant access and allows it.4. User B is granted permission
through ledger specific access control/privacy features to the data of User A.

Type
of
Social
Inter-
action

Peer to Peer Data Sharing

Nar-
rative

Let’s say that two healthcare providers have both implemented their own blockchain based patient data
management systems and are looking to integrate with each other to provide patients with a seamless
experience when being directed from one to another for certain treatments. The user is in control over
their data on both platforms separately and with a Hyperledger Cactus backed integration they could also
define fine grained access control lists consenting to the two healthcare providers to access each other’s
data that they collected about the patient.

Ac-
tors

* User A: Patient engaging in business with a healthcare provider* User B: Healthcare provider offering
services to User A. Some of said services depend on having access to prior medical history of User A.

Goals
of Ac-
tors

* User A: Wants to have fine grained access control in place when it comes to sharing their data to ensure
that it does not end up in the hands of hackers or on a grey data market place.User B

Suc-
cess
Sce-
nario

User B (healthcare provider) has access to exactly as much information as they need to and nothing more.

Suc-
cess
Crite-
ria

There’s cryptographic proof for the integrity of the data. Data hasn’t been compromised during the sharing
process, e.g. other actors did not gain unauthorized access to the data by accident or through malicious
actions.

Fail-
ure
Crite-
ria

User B (healthcare provider) either does not have access to the required data or they have access to data
that they are not supposed to.

Pre-
requi-
sites

User A and User B are registered on a ledger or two separate ledgers that support the concept of individual
data ownership, access controls and sharing.

Com-
ments

It makes most sense for best privacy if User A and User B are both present with an identity on the same
permissioned, privacy-enabled ledger rather than on two separate ones. This gives User A an additional
layer of security since they can know that their data is still only stored on one ledger instead of two (albeit
both being privacy-enabled)

56 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.6. 3. Example Use Cases 57

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.9 3.9 Integrate Existing Food Traceability Solutions

W3C
Use
Case
At-
tribute
Name

W3C Use Case Attribute Value

Use
Case
Ti-
tle

Food Traceability Integration

Use
Case

1. Consumer is evaluating a food item in a physical retail store. 2. Consumer queries the designated end
user application designed to provide food traces. 3. Consumer makes purchasing decision based on food
trace.

Type
of
So-
cial
In-
ter-
ac-
tion

Software Implementation Project

Nar-
ra-
tive

Both Organization A and Organization B have separate products/services for solving the problem of
verifying the source of food products sold by retailers.A retailer has purchased the food traceability solution
from Organization A while a food manufacturer (whom the retailer is a customer of) has purchased their
food traceability solution from Organization B.The retailer wants to provide end to end food traceability
to their customers, but this is not possible since the chain of traceability breaks down at the manufacturer
who uses a different service or solution. Cactus is used as an architectural component to build an integration
for the retailer which ensures that consumers have access to food tracing data regardless of the originating
system for it being the product/service of Organization A or Organization B.

Ac-
tors

Organization A, Organization B entities whose business has to do with food somewhere along the
global chain from growing/manufacturing to the consumer retail shelves. Consumer: Private citizen who
makes food purchases in a consumer retail goods store and wishes to trace the food end to end before pur-
chasing decisions are finalized.

Goals
of
Ac-
tors

Organization A, Organization B: Provide Consumer with a way to trace food items back to the
source.Consumer: Consume food that’s been ethically sourced, treated and transported.

Suc-
cess
Sce-
nario

Consumer satisfaction increases on account of the ability to verify food origins.

Suc-
cess
Cri-
te-
ria

Consumer is able to verify food items’ origins before making a purchasing decision.

Fail-
ure
Cri-
te-
ria

Consumer is unable to verify food items’ origins partially or completely.

Pre-
req-
ui-
sites

1. Organization A and Organization B are both signed up for blockchain enabled software services
that provide end to end food traceability solutions on their own but require all participants in the chain to use
a single solution in order to work.2. Both solutions of Organization A and B have terms and conditions
such that it is possible technically and legally to integrate the software with each other and Cactus.

Com-
ments

58 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.10 3.10 End User Wallet Authentication/Authorization

W3C
Use
Case
At-
tribute
Name

W3C Use Case Attribute Value

Use
Case
Title

Wallet Authentication/Authorization

Use
Case

1. User A has separate identities on different permissioned and permissionless ledgers in the form of
private/public key pairs (Public Key Infrastructure).2. User A wishes to access/manage these identities
through a single API or user interface and opts to on-board the identities to a Cactus deployment.3. User
A performs the on-boarding of identities and is now able to interact with wallets attached to said identities
through Cactus or end user applications that leverage Cactus under the hood (e.g. either by directly
issuing API requests or using an application that does so.

Type
of
Social
Inter-
action

Identity Management

Nar-
rative

End user facing applications can provide a seamless experience connecting multiple permissioned (or
permissionless) networks for an end user who has a set of different identity proofs for wallets on different
ledgers.

Ac-
tors

User A: The person or entity whose identities get consolidated within a single Cactus deployment

Goals
of Ac-
tors

User A: Convenient way to manage an array of distinct identities with the trade-off that a Cactus deploy-
ment must be trusted with the private keys of the identities involved (an educated decision on the user’s
part).

Suc-
cess
Sce-
nario

User A is able to interact with their wallets without having to access each private key individually.

Suc-
cess
Crite-
ria

User A’s credentials are safely stored in the Cactus keychain component where it is the least likely that
they will be compromised (note that it is never impossible, but least unlikely, definitely)

Fail-
ure
Crite-
ria

User A is unable to import identities to Cactus for a number of different reasons such as key format
incompatibilities.

Pre-
requi-
sites

1. User A has to have the identities on the various ledgers set up prior to importing them and must have
access to the private

Com-
ments

8.6. 3. Example Use Cases 59

Hyperledger Cactus, Release 1.0.0-rc.3

60 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.6.11 3.11 Blockchain Migration

Use
Case
At-
tribute
Name

Use Case Attribute Value

Use
Case
Title

Blockchain Migration

Use
Case

1. Consortium A operates a set of services on the source blockchain.2. Consortium A decides to use
another blockchain instance to run its services. 3. Consortium A migrates the existing assets and data
to the target blockchain.4. Consortium A runs the services on the target blockchain.

Inter-
work-
ing
pat-
terns

Value transfer, Data transfer

Type
of
Social
Inter-
action

Asset and Data Transfer

Narra-
tive

A group of members (Consortium A) that operates the source blockchain (e.g., Hyperledger Fabric in-
stance) would like to migrate the assets, data, and functionality to the target blockchain (e.g., Hyperledger
Besu instance) to expand their reach or to benefits from better performance, lower cost, or enhanced pri-
vacy offered by the target blockchain. In the context of public blockchains, both the group size and the
number of services could even be one. For example, a user that runs a Decentralized Application (DApp)
on a publication blockchain wants to migrate DApp’s assets, data, and functionality to a target blockchain
that is either public or private.The migration is initiated only after all members of Consortium A pro-
vide their consent to migrate. During the migration, assets and data that are required to continue the
services are copied to the target blockchain. A trusted intermediatory (e.g., Oracle) is also authorized by
the members of Consortium A to show the current state of assets and data on source blockchain to the
target blockchain. Assets on the source blockchain are burned and smart contracts are destructed during
the migration to prevent double-spending. Proof-of-burn is verified on the target blockchain before cre-
ating the assets, smart contracts, or their state using the following process: 1. Consortium A requests
smart-contract on the target blockchain (via Cactus) to transfer their asset/data, which will then wait until
confirmation from the smart contract on the source blockchain. 2. Consortium A requests smart con-
tract on source blockchain (via Cactus) to burn their asset/data. 3. Smart contract on source blockchain
burns the asset/data and notifies that to the smart contract on the target blockchain. 4. Given the confir-
mation from Step 3, the smart contract on target blockchain creates asset/data. After the migration, future
transactions are processed on the target blockchain. In contrast, requests to access historical transactions
are directed to the source blockchain. As assets are burned and smart contracts are destructed, any fu-
ture attempt to manipulate them on the source blockchain will fail.Regardless of whether the migration
involves an entire blockchain or assets, data, and smart contracts of a DApp, migration requires lots of
technical effort and time. The Blockchain Migration feature from Cactus can provide support for
doing so by connecting source and target blockchains; proving values and proof-of-burn of assets, smart
contracts, and data imported from the source blockchain to the target; and then performing the migration
task.

Actors 1. Consortium A: The group of entities operating on the source blockchain who collectively aims at
performing the migration to the target blockchain.

Goals
of
Actors

1. Consortium A: Wants to be able to operate its services on the target blockchain while gaining its
benefits such as better performance, lower cost, or enhanced privacy.

Suc-
cess
Sce-
nario

Asset and data (including smart contracts) are available on the target blockchain, enabling Consortium
A’s services to operate on the target blockchain.

Suc-
cess
Crite-
ria

Migration starts at a set time, and all desired assets and data, as well as their histroy have been migrated
in a decentralized way.

Failure
Crite-
ria

States of all assets and data on the target blockchain do not match the states on the source blockchain
before migration, e.g., when transactions replayed on target blockchain are reordered. Consortium A is
unable to migrate to the target blockchain for several reasons, such as

inabil-
ity to
recre-
ate the
same
smart
con-
tract
logic,
inabil-
ity to
arbi-
trary
recre-
ate
native
assets
on
target
blockchain,
and
lack of
access
to
private
keys of
exter-
nal ac-
counts.
Pre-
requi-
sites

1. Consortium A wants to migrate the assets and data on the source blockchain, and have chosen a desir-
able target blockchain.2. Migration plan and window are informed to all members of the consortium, and
they agree to the migration.3. Consortium A has write and execute permissions on the target blockchain.

Com-
ments

* Consortium A is the governance body of services running on the source blockchain. * Data include
smart contracts and their data originating from the source blockchain. Depending on the use case, a subset
of the assets and data may be recreated on the target blockchain.* This use case relates to the use cases
implying asset and data portability (e.g., 2.1). However, migration is mostly one-way and nonreversible.*
This use case provides blockchain portability; thus, retains blockchain properties across migration, re-
duces costs, time to migration, and foster blockchain adoption.

8.6. 3. Example Use Cases 61

Hyperledger Cactus, Release 1.0.0-rc.3

Motivation

The suitability of a blockchain platform regarding a use case depends on the underlying blockchain properties. As
blockchain technologies are maturing at a fast pace, in particular private blockchains, its properties such as performance
(i.e., throughput, latency, or finality), transaction fees, and privacy might change. Also, blockchain platform changes,
bug fixes, security, and governance issues may render an existing application/service suboptimal. Further, business
objectives such as the interest to launch own blockchain instance, partnerships, mergers, and acquisitions may motivate
a migration. Consequently, this creates an imbalance between the user expectations and the applicability of the existing
solution. It is, therefore, desirable for an organization/consortium to be able to replace the blockchain providing the
infrastructure to a particular application/service.

Currently, when a consortium wants to migrate the entire blockchain or user wants to migrate a DApp on a public
blockchain (e.g., the source blockchain became obsolete, cryptographic algorithms are no longer secure, and business
reasons), the solution is to re-implement business logic using a different blockchain platform, and arbitrary recreate the
assets and data on the target blockchain, yielding great effort and time, as well as losing blockchain properties such as
immutability, consistency, and transparency. Data migrations have been performed before on public blockchains [2, 3,
4] to render flexibility to blockchain-based solutions. Such work proposes data migration capabilities and patterns for
public, permissionless blockchains, in which a user can specify requirements and scope for the blockchain infrastructure
supporting their service.

3.11.1 Blockchain Data Migration

Data migration corresponds to capturing the subset of assets and data on a source blockchain and constructing a repre-
sentation of those in a target blockchain. Note that the models underlying both blockchains do not need to be the same
(e.g., world state model in Hyperledger Fabric vs account-balance model in Ethereum). For migration to be effective, it
should be possible to capture the necessary assets and data from the source blockchain and to write them on the target
blockchain.

3.11.2 Blockchain Smart Contract Migration

The task of migrating a smart contract comprises the task of migrating the smart contract logic and data embedded in it.
In specific, the data should be accessible and writeable on another blockchain. When the target blockchain can execute
a smart contract written for the source blockchain, execution behaviour can be preserved by redeploying the same smart
contract (e.g., reusing a smart contract written for Ethereum on Hyperldger Besu) and recreating its assets and data.
If code reuse is not possible (either at source or binary code level), the target blockchain’s virtual machine should
support the computational complexity of the source blockchain (e.g., one cannot migrate all Ethereum smart contracts
to Bitcoin, but the other way around is feasible). Automatic smart contract migration (with or without translation)
yields risks for enterprise blockchain systems, and thus the solution is nontrivial [4].

3.11.3 Semi-Automatic Blockchain Migration

By expressing a user’s preferences in terms of functional and non-functional requirements, Cactus can recommend a
set of suitable blockchains, as the target for the migration. Firstly, a user could know in real-time the characteristics of
the target blockchain that would influence the migration decision. For instance, the platform can analyze the cost of
writing data to Ethereum, Ether:USD exchange rate, average inter-block time, transaction throughput, and network hash
rate [3]. Based on those characteristics and user-defined requirements, Cactus proposes a migration with indicators
such as predicted cost, time to complete the migration, and the likelihood of success. For example, when transaction
inclusion time or fee on Ethereum exceeds a threshold, Cactus may choose Polkadot platform, as it yields lower
transaction inclusion time or fee. Cactus then safely migrate assets, data, and future transactions from Ethereum to
Polkadot, without compromising the solution in production. This feature is more useful for public blockchains.

62 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.7 4. Software Design

8.7.1 4.1. Principles

4.1.1. Wide support

Interconnect as many ecosystems as possible regardless of technology limitations

4.1.2. Plugin Architecture from all possible aspects

Identities, DLTs, service discovery. Minimize how opinionated we are to really embrace interoperability rather than
silos and lock-in. Closely monitor community feedback/PRs to determine points of contention where core Hyperledger
Cactus code could be lifted into plugins. Limit friction to adding future use cases and protocols.

4.1.3. Prevent Double spending Where Possible

Two representations of the same asset do not exist across the ecosystems at the same time unless clearly labelled as
such [As of Oct 30 limited to specific combinations of DLTs; e.g. not yet possible with Fabric + Bitcoin]

4.1.4 DLT Feature Inclusivity

Each DLT has certain unique features that are partially or completely missing from other DLTs. Hyperledger Cactus -
where possible - should be designed in a way so that these unique features are accessible even when interacting with
a DLT through Hyperledger Cactus. A good example of this principle in practice would be Kubernetes CRDs and
operators that allow the community to extend the Kubernetes core APIs in a reusable way.

4.1.5 Low impact

Interoperability does not redefine ecosystems but adapts to them. Governance, trust model and workflows are preserved
in each ecosystem Trust model and consensus must be a mandatory part of the protocol handshake so that any possible
incompatibilities are revealed up front and in a transparent way and both parties can “walk away” without unintended
loss of assets/data. The idea comes from how the traditional online payment processing APIs allow merchants to specify
the acceptable level of guarantees before the transaction can be finalized (e.g. need pin, signed receipt, etc.). Following
the same logic, we shall allow transacting parties to specify what sort of consensus, transaction finality, they require.
Consensus requirements must support predicates, e.g. “I am on Fabric, but will accept Bitcoin so long X number of
blocks were confirmed post-transaction” Requiring KYC (Know Your Customer) compliance could also be added to
help foster adoption as much as possible.

4.1.6 Transparency

Cross-ecosystem transfer participants are made aware of the local and global implications of the transfer. Rejection
and errors are communicated in a timely fashion to all participants. Such transparency should be visible as trustworthy
evidence.

8.7. 4. Software Design 63

Hyperledger Cactus, Release 1.0.0-rc.3

4.1.7 Automated workflows

Logic exists in each ecosystem to enable complex interoperability use-cases. Cross-ecosystem transfers can be automat-
ically triggered in response to a previous one. Automated procedure, which is regarding error recovery and exception
handling, should be executed without any interruption.

4.1.8 Default to Highest Security

Support less secure options, but strictly as opt-in, never opt-out.

4.1.9 Transaction Protocol Negotiation

Participants in the transaction must have a handshake mechanism where they agree on one of the supported protocols to
use to execute the transaction. The algorithm looks an intersection in the list of supported algorithms by the participants.

4.1.10 Avoid modifying the total amount of digital assets on any blockchain whenever possible

We believe that increasing or decreasing the total amount of digital assets might weaken the security of blockchain,
since adding or deleting assets will be complicated. Instead, intermediate entities (e.g. exchanger) can pool and/or send
the transfer.

4.1.11 Provide abstraction for common operations

Our communal modularity should extend to common mechanisms to operate and/or observe transactions on
blockchains.

4.1.12 Integration with Identity Frameworks (Moonshot)

Do not expend opinions on identity frameworks just allow users of Cactus to leverage the most common ones and allow
for future expansion of the list of supported identity frameworks through the plugin architecture. Allow consumers of
Cactus to perform authentication, authorization and reading/writing of credentials.

Identity Frameworks to support/consider initially:

• Hyperledger Indy (Sovrin)

• DIF

• DID

8.7.2 4.2 Feature Requirements

4.2.1 New Protocol Integration

Adding new protocols must be possible as part of the plugin architecture allowing the community to propose, develop,
test and release their own implementations at will.

64 Chapter 8. Whitepaper

https://www.hyperledger.org/projects/hyperledger-indy
https://identity.foundation/
https://www.w3.org/TR/did-core/

Hyperledger Cactus, Release 1.0.0-rc.3

4.2.2 Proxy/Firewall/NAT Compatibility

Means for establishing bidirectional communication channels through proxies/firewalls/NAT wherever possible

4.2.3 Bi-directional Communications Layer

Using a blockchain agnostic bidirectional communication channel for controlling and monitoring transactions on
blockchains through proxies/firewalls/NAT wherever possible.

• Blockchains vary on their P2P communication protocols. It is better to build a modular method for send-
ing/receiving generic transactions between trustworthy entities on blockchains.

4.2.4 Consortium Management

Consortiums can be formed by cooperating entities (person, organization, etc.) who wish to contribute hard-
ware/network resources to the operation of a Cactus cluster.

What holds the consortiums together is the consensus among the members on who the members are, which is defined
by the nodes’ network hosts and public keys. The keys are produced from the Secp256k1 curve.

The consortium plugin(s) main responsibility is to provide information about the consortium’s members, nodes and
public keys. Cactus does not prescribe any specific consensus algorithm for the addition or removal of consortium
members, but rather focuses on the technical side of making it possible to operate a cluster of nodes under the owner-
ship of separate entities without downtime while also keeping it possible to add/remove members. It is up to authors of
plugins who can implement any kind of consortium management functionality as they see fit. The default implemen-
tation that Cactus ships with is in the cactus-plugin-consortium-manual package which - as the name implies -
leaves the achievement of consensus to the initial set of members who are expected to produce the initial set of network
hosts/public keys and then configure their Cactus nodes accordingly. This process and the details of operation are laid
out in much more detail in the dedicated section of the manual consortium management plugin further below in this
document.

After the forming of the consortium with it’s initial set of members (one or more) it is possible to enroll or remove
certain new or existing members, but this can vary based on different implementations.

8.7.3 4.3 Working Policies

1. Participants can insist on a specific protocol by pretending that they only support said protocol only.

2. Protocols can be versioned as the specifications mature

3. The two initially supported protocols shall be the ones that can satisfy the requirements for Fujitsu’s and Accen-
ture’s implementations respectively

8.8 5. Architecture

8.8.1 5.1 Deployment Scenarios

Hyperledger Cactus has several integration patterns as the following.

• Note: In the following description, Value (V) means numerical assets (e.g. money). Data (D) means non-
numerical assets (e.g. ownership proof). Ledger 1 is source ledger, Ledger 2 is destination ledger.

8.8. 5. Architecture 65

Hyperledger Cactus, Release 1.0.0-rc.3

No. Name Pat-
tern

Consistency

1. value transfer V -> V check if V1 = V2 (as V1 is value on ledger 1, V2 is value on ledger 2)
2. value-data trans-

fer
V -> D check if data transfer is successful when value is transferred

3. data-value trans-
fer

D -> V check if value transfer is successful when data is transferred

4. data transfer D -> D check if all D1 is copied on ledger 2 (as D1 is data on ledger 1, D2 is data on
ledger 2)

5. data merge D <->
D

check if D1 = D2 as a result (as D1 is data on ledger 1, D2 is data on ledger 2)

There’s a set of building blocks (members, nodes, API server processes, plugin instances) that you can use when
defining (founding) a consortium and these building blocks relate to each other in a way that can be expressed with an
entity relationship diagram which can be seen below. The composability rules can be deducted from how the diagram
elements (entities) are connected (related) to each other, e.g. the API server process can have any number of plugin
instances in it and a node can contain any number of API server processes, and so on until the top level construct is
reached: the consortium.

Consortium management does not relate to achieving consensus on data/transactions involving individual
ledgers, merely about consensus on the metadata of a consortium.

Now, with these composability rules in mind, let us demonstrate a few different deployment scenarios (both expected
and exotic ones) to showcase the framework’s flexibility in this regard.

5.1.1 Production Deployment Example

Many different configurations are possible here as well. One way to have two members form a consortium and both of
those members provide highly available, high throughput services is to have a deployment as shown on the below figure.
What is important to note here is that this consortium has 2 nodes, 1 for each member and it is irrelevant how many
API servers those nodes have internally because they all respond to requests through the network host/web domain that
is tied to the node. One could say that API servers do not have a distinguishable identity relative to their peer API
servers, only the higher-level nodes do.

5.1.2 Low Resource Deployment Example

This is an example to showcase how you can pull up a full consortium even from within a single operating system
process (API server) with multiple members and their respective nodes. It is not something that’s recommended for a
production grade environment, ever, but it is great for demos and integration tests where you have to simulate a fully
functioning consortium with as little hardware footprint as possible to save on time and cost.

The individual nodes/API servers are isolated by listening on seperate TCP ports of the machine they are hosted on:

66 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

8.8.2 5.2 System architecture and basic flow

Hyperledger Cactus will provide integrated service(s) by executing ledger operations across multiple blockchain
ledgers. The execution of operations are controlled by the module of Hyperledger Cactus which will be provided
by vendors as the single Hyperledger Cactus Business Logic plugin. The supported blockchain platforms by Hyper-
ledger Cactus can be added by implementing new Hyperledger Cactus Ledger plugin. Once an API call to Hyperledger
Cactus framework is requested by a User, Business Logic plugin determines which ledger operations should be exe-
cuted, and it ensures reliability on the issued integrated service is completed as expected. Following diagram shows
the architecture of Hyperledger Cactus based on the discussion made at Hyperledger Cactus project calls. The overall
architecture is as the following figure.

5.2.1 Definition of key components in system architecture

Key components are defined as follows:

• Business Logic Plugin: The entity executes business logic and provide integration services that are connected
with multiple blockchains. The entity is composed by web application or smart contract on a blockchain. The
entity is a single plugin and required for executing Hyperledger Cactus applications.

• CACTUS Node Server: The server accepts a request from an End-user Application, and return a response
depending on the status of the targeted trade. Trade ID will be assigned when a new trade is accepted.

• End-user Application: The entity submits API calls to request a trade, which invokes a set of transactions on
Ledger by the Business Logic Plugin.

• Ledger Event Listener: The standard interface to handle various kinds of events(LedgerEvent) regarding asyn-
chronous Ledger operations. The LedgerEvent will be notified to appropriate business logic to handle it.

• Ledger Plugin: The entity communicates Business Logic Plugin with each ledger. The entity is composed by a
validator and a verifier as follows. The entity(s) is(are) chosen from multiple plugins on configuration.

• Service Provider Application: The entity submits API calls to control the cmd-api-server when it is en-
abling/disabling Ledger plugins, or shutting down the server. Additional commands may be available on Admin
API since Server controller is implementation-dependent.

• Validator: The entity monitors transaction records of Ledger operation, and it determines the result(success,
failed, timeouted) from the transaction records. Validator ensure the determined result with attaching digital
signature with “Validator key” which can be verified by “Verifier”.

• Validator Server: The server accepts a connection from Verifier, and it provides Validator API, which can be
used for issuing signed transactions and monitoring Ledger behind it. The LedgerConnector will be implemented
for interacting with the Ledger nodes.

• Verifier: The entity accepts only sucussfully verified operation results by verifying the digital signature of the
validator. Verifier will be instantiated by calling the VerifierFactory#create method with associated with the
Validator to connect. Each Verifier may be temporarily enabled or disabled. Note that “Validator” is apart from
“Verifier” over a bi-directional channel.

• Verifier Registry: The information about active Verifier. The VerifierFactory uses this information to instantiate
Verifier for the Business Logic Plugin.

8.8. 5. Architecture 67

Hyperledger Cactus, Release 1.0.0-rc.3

5.2.2 Bootstrapping Cactus application

Key components defined in 4.2.1 becomes ready to serve Cactus application service after following procedures:

1. Start Validator: The Validator of Ledger Pluginwhich is chosen for each Ledger depending the platform
technology used (ex. Fabric, Besu, etc.) will be started by the administrator of Validator. Validator becomes
ready status to accept connection from Verifier after initialization process is done.

2. Start Business Logic Plugin implementation: The administrator of Cactus application service starts
Business Logic Plugin which is implemented to execute business logic(s). Business Logic Plugin
implementation first checks availability of depended Ledger Plugin(s), then it trys to enable each Ledger
Plugin with customized profile for actual integrating Ledger. This availability checks also covers determina-
tion on the status of connectivity from Verifier to Validator. The availability of each Ledger is registered
and maintained at Cactus Routing Interface, and it allows bi-directional message communication between
Business Logic Plugin and Ledger.

5.2.3 Processing Service API call

Service API call is processed as follows:

• Step 1: “Application user(s)” submits an API call to “Cactus routing interface”.

• Step 2: The API call is internally routed to “Business Logic Plugin” by “Cactus Routing Interface” for initiating
associated business logic. Then, “Business Logic Plugin” determines required ledger operation(s) to complete
or abort a business logic.

• Step 3” “Business Logic Plugin” submits API calls to request operations on “Ledger(s)” wrapped with “Ledger
Plugin(s)”. Each API call will be routed to designated “Ledger Plugin” by “Routing Interface”.

• Step 4: “Ledger Plugin” sends an event notification to “Business Logic Plugin” via “Cactus Routing Interface”,
when its sub-component “Verifier” detect an event regarding requested ledger operation to “Ledger”.

• Step 5: “Business Logic Plugin” receives a message from “Ledger Plugin” and determines completion or con-
tinuous of the business logic. When the business logic requires to continuous operations go to “Step 3” ,or end
the process.

8.8.3 5.3 APIs and communication protocols between Cactus components

API for Service Application, communication protocol for business logic plugin to interact with “Ledger Plugins” will
be described in this section.

5.3.1 Cactus Service API

Cactus Service API is exposed to Application user(s). This API is used to request for initializing a business logic which
is implemented at Business Logic Plugin. It is also used for making inquery of execution status and final result if the
business logic is completed.

Following RESTful API design manner, the request can be mapped to one of CRUD operation with associated resource
‘trade’.

The identity of User Application is authenticated and is applied for access control rule(s) check which is implemented
as part of Business Logic Plugin.

NOTE: we are still open to consider other choose on API design patterns, such as gRPC or GraphQL.

68 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

Open Endpoints

Open endpoints require no authentication

• Login : POST /api/v1/bl/login

Restricted Endpoints

Restricted endpoints requre a valid Token to be included in the headder of the request. A Token can be acquired by
calling Login.

• Request Execution of Trade(instance of business logic) : POST /api/v1/bl/trades/

• Show Current Status of Trade : GET /api/v1/bl/trades/(id)

• Show Business Logics : GET /api/v1/bl/logics/

• Show Specification of Business Logic : GET /api/v1/bl/logics/(id)

• Register a Wallet : POST /api/v1/bl/wallets/

• Show Wallet List : GET /api/v1/bl/wallets/

• Update Existing Wallets : PUT /api/v1/bl/wallets/(id)

• Delete a Wallet : DELETE /api/v1/bl/walllets/(id)

NOTE: resource trade and logic are cannot be updated nor delete

5.3.2 Ledger plugin API

Ledger plugin API is designed for allowing Business Logic Plugin to operate and/or monitor Ledger behind the com-
ponents of Verifier and Validator.

Validator provides a common set of functions that abstract communication between Verifier and Ledger. Please note
that Validator will not have any privilege to manipulate assets on the Ledger behind it. Verifier can receive requests
from Business Logic Plugin and reply responses and events asynchronously.

APIs of Verifier and Validator are described as the following table:

8.8. 5. Architecture 69

Hyperledger Cactus, Release 1.0.0-rc.3

No. Com-
po-
nent

API
Name

Input Description

1. Veri-
fier

sendAsyn-
cRequest

contract (object)method
(object)args (object)

Sends an asynchronous request to the validator

2. Veri-
fier

sendSyn-
cRequest

contract (object)method
(object)args (object)

Sends a synchronous request to the validator

3. Veri-
fier

startMoni-
tor

id (string)eventListener
(VerifierEventListener)

Request a verifier to start monitoring ledger

4. Veri-
fier

stopMoni-
tor

id (string) Request a verifier to stop monitoring ledger

5. Valida-
tor

sendAsyn-
cRequest

args (Object) Called when the validator receives an asyn-
chronous operation request from the verifier

6. Valida-
tor

sendSyn-
cRequest

args (Object) Called when the validator receives a synchronous
operation request from the verifier

7. Valida-
tor

startMoni-
tor

cb (function) Called when monitoring ledger is needed

8. Valida-
tor

stopMoni-
tor

none Called when monitoring ledger is no longer needed

The detail information is described as following:

• packages/cactus-cmd-socketio-server/src/main/typescript/verifier/LedgerPlugin.ts

– interface IVerifier

interface IVerifier {
// BLP -> Verifier
sendAsyncRequest(contract: Object, method: Object, args: Object): Promise

→˓<void>;
sendSyncRequest(contract: Object, method: Object, args: Object): Promise<any>

→˓;
startMonitor(id: string, options: Object, eventListener:␣

→˓VerifierEventListener): Promise<void>;
stopMonitor(id: string): void;

}

∗ function sendAsyncRequest(contract: object, method: object, args: object):
Promise<void>

· description:

· Send a request to the validator (and the ledger behind it) that takes time to finish e.g. writing
to the ledger.

· input parameters:

· contract (Object): specify the smart contract

· method (Object): name of the method

· args (Object): arguments to the method

· returns:

· Promise<void>: resolve() when it successfully sent the request to the validator,
reject() otherwise.

70 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

∗ function sendSyncRequest: Promise<any>

· description:

· Send a request to the validator, e.g. searching a datablock.

· input parameters:

· contract (Object): specify the smart contract

· method (Object): name of the method

· args (Object): arguments to the method

· returns:

· Promise<any>: search result is returned.

∗ function startMonitor(id: string, options: Object, eventListener:
VerifierEventListener): Promise<void>

· description:

· Request the verifier to start monitoring ledger.

· input parameters:

· id (string): a user (Business Logic Plugin) generated string to identify the ledgerEvent object.

· options (Object): parameters to monitor functionality in the validator. specify {} if no
options are necessary

· eventListener (VerifierEventListener): the callback function of this object is called when
there are new blocks written to the ledger.

· returns:

· Promise<void>: resolve() when it successfully started monitoring, reject() otherwise.

∗ function stopMonitor(id: string): void

· description:

· Request the verifier to remove an eventListener from event monitors list.

· input parameter:

· id (string): a string identifying the ledgerEvent.

· returns:

· none

– interface IValidator

interface IValidator {
// Verifier -> Validator
sendAsyncRequest(args: Object): Object;
sendSyncRequest(args: Object): Object;
startMonitor(cb: function): Promise<void>;
stopMonitor(): void;

}

∗ function sendAsyncRequest(args: Object): Object

· description:

8.8. 5. Architecture 71

Hyperledger Cactus, Release 1.0.0-rc.3

· Send a request to the ledger that takes time to finish e.g. writing to the ledger. The implementer
of a validator for new distributed ledger technology (DLT) is expected to extract parameters
from args object and cal the API (of the target DLT).

· input parameter:

· args (Ojbect): parameters of verifier’s sendAsyncRequest API are included in this object.

· returns:

· Object

· Editor’s Note: check return type

∗ function sendSyncRequest(args: Object): Object

· description:

· Send a request to a validator, e.g. searching a datablock.

· input parameter:

· args (Object): parameters of verifier’s sendSyncRequest API are inlucded in this object.

· returns:

· Object: result of the requested operation.

∗ function startMonitor(cb: function): Promise<void>

· description:

· Start monitoring of the ledger. The implementer of a validator for new distributed ledger
technology (DLT) is expected to start monitoring ledger events of the target DLT. If there
are any new block written to the ledger, the monitoring code should call cb(data). The
parameter to the cb is the new data from the ledger.

· input parameter:

· cb (function): callback function called when there are new data in the ledger.

· returns:

· Promise: resolve() when it successfully started monitorinig the ledger, reject() other-
wise.

∗ function stopMonitor(void): void:

· description:

· Stop monitoring the ledger.

· input parameter:

· none

· returns:

· none

72 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

5.3.3 Exection of “business logic” at “Business Logic Plugin”

The developper of Business Logic Plugin can implement business logic(s) as codes to interact with Ledger Plugin.
The interaction between Business Logic Plugin and Ledger Plugin includes:

• Submit a transaction request on targeted Ledger Plugin

• Make a inquery to targeted Ledger Plugin (ex. account balance inquery)

• Receive an event message, which contains transaction/inquery result(s) or error from Ledger Plugin

NOTE: The transaction request is prepared by Business Logic Plugin using transaction template with given parameters

The communication protocol between Business Logic Plugin, Verifier, and Validator as following:

8.8.4 5.4 Technical Architecture

5.4.1 Monorepo Packages

Hyperledger Cactus is divided into a set of npm packages that can be compiled separately or all at once.

All packages have a prefix of cactus-* to avoid potential naming conflicts with npm modules published by other
Hyperledger projects. For example if both Cactus and Aries were to publish a package named common under the shared
@hyperledger npm scope then the resulting fully qualified package name would end up being (without the prefix)
as @hyperledger/common but with prefixes the conflict can be resolved as @hyperledger/cactus-common and
@hyperledger/aries-common. Aries is just as an example here, we do not know if they plan on releasing packages
under such names, but it also does not matter for the demonstration of ours.

Naming conventions for packages:

• cmd-* for packages that ship their own executable

• All other packages should be named preferably as a single English word suggesting the most important fea-
ture/responsibility of the package itself.

5.4.1.1 cmd-api-server

A command line application for running the API server that provides a unified REST based HTTP API for calling
code. Contains the kernel of Hyperledger Cactus. Code that is strongly opinionated lives here, the rest is pushed to
other packages that implement plugins or define their interfaces. Comes with Swagger API definitions, plugin loading
built-in.

By design this is stateless and horizontally scalable.

The main responsibilities of this package are:

5.4.1.1.1 Runtime Configuration Parsing and Validation

The core package is responsible for parsing runtime configuration from the usual sources (shown in order of prece-
dence):

• Explicit instructions via code (config.setHttpPort(3000);)

• Command line arguments (--http-port=3000)

• Operating system environment variables (HTTP_PORT=3000)

• Static configuration files (config.json: { "httpPort": 3000 })

8.8. 5. Architecture 73

Hyperledger Cactus, Release 1.0.0-rc.3

The Apache 2.0 licensed node-convict library to be leveraged for the mechanical parts of the configuration parsing and
validation: https://github.com/mozilla/node-convict

5.4.1.1.2 Configuration Schema - API Server

To obtain the latest configuration options you can check out the latest source code of Cactus and then run this from the
root folder of the project on a machine that has at least NodeJS 10 or newer installed:

$ date
Mon 18 May 2020 05:09:58 PM PDT

$ npx ts-node -e "import {ConfigService} from './packages/cactus-cmd-api-server/src/main/
→˓typescript/config/config-service'; console.log(ConfigService.getHelpText());"

Order of precedent for parameters in descdending order: CLI, Environment variables,␣
→˓Configuration file.
Passing "help" as the first argument prints this message and also dumps the effective␣
→˓configuration.

Configuration Parameters
========================

plugins:
Description: A collection of plugins to load at runtime.
Default:
Env: PLUGINS
CLI: --plugins

configFile:
Description: The path to a config file that holds the configuration␣

→˓itself which will be parsed and validated.
Default: Mandatory parameter without a default value.
Env: CONFIG_FILE
CLI: --config-file

cactusNodeId:
Description: Identifier of this particular Cactus node. Must be unique␣

→˓among the total set of Cactus nodes running in any given Cactus deployment. Can be any␣
→˓string of characters such as a UUID or an Int64

Default: Mandatory parameter without a default value.
Env: CACTUS_NODE_ID
CLI: --cactus-node-id

logLevel:
Description: The level at which loggers should be configured. Supported␣

→˓values include the following: error, warn, info, debug, trace
Default: warn
Env: LOG_LEVEL
CLI: --log-level

cockpitHost:
Description: The host to bind the Cockpit webserver to. Secure default␣

→˓is: 127.0.0.1. Use 0.0.0.0 to bind for any host.
Default: 127.0.0.1
Env: COCKPIT_HOST
CLI: --cockpit-host

(continues on next page)

74 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

cockpitPort:
Description: The HTTP port to bind the Cockpit webserver to.
Default: 3000
Env: COCKPIT_PORT
CLI: --cockpit-port

cockpitWwwRoot:
Description: The file-system path pointing to the static files of web␣

→˓application served as the cockpit by the API server.
Default: packages/cactus-cmd-api-server/node_modules/@hyperledger/cactus-

→˓cockpit/www/
Env: COCKPIT_WWW_ROOT
CLI: --cockpit-www-root

apiHost:
Description: The host to bind the API to. Secure default is: 127.0.0.1.␣

→˓Use 0.0.0.0 to bind for any host.
Default: 127.0.0.1
Env: API_HOST
CLI: --api-host

apiPort:
Description: The HTTP port to bind the API server endpoints to.
Default: 4000
Env: API_PORT
CLI: --api-port

apiCorsDomainCsv:
Description: The Comma seperated list of domains to allow Cross Origin␣

→˓Resource Sharing from when serving API requests. The wildcard (*) character is␣
→˓supported to allow CORS for any and all domains, however using it is not recommended␣
→˓unless you are developing or demonstrating something with Cactus.

Default: Mandatory parameter without a default value.
Env: API_CORS_DOMAIN_CSV
CLI: --api-cors-domain-csv

publicKey:
Description: Public key of this Cactus node (the API server)
Default: Mandatory parameter without a default value.
Env: PUBLIC_KEY
CLI: --public-key

privateKey:
Description: Private key of this Cactus node (the API server)
Default: Mandatory parameter without a default value.
Env: PRIVATE_KEY
CLI: --private-key

keychainSuffixPrivateKey:
Description: The key under which to store/retrieve the private key from␣

→˓the keychain of this Cactus node (API server)The complete lookup key is constructed␣
→˓from the ${CACTUS_NODE_ID}${KEYCHAIN_SUFFIX_PRIVATE_KEY} template.

Default: CACTUS_NODE_PRIVATE_KEY
Env: KEYCHAIN_SUFFIX_PRIVATE_KEY
CLI: --keychain-suffix-private-key

keychainSuffixPublicKey:
Description: The key under which to store/retrieve the public key from␣

→˓the keychain of this Cactus node (API server)The complete lookup key is constructed␣
→˓from the ${CACTUS_NODE_ID}${KEYCHAIN_SUFFIX_PRIVATE_KEY} template.

(continues on next page)

8.8. 5. Architecture 75

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

Default: CACTUS_NODE_PUBLIC_KEY
Env: KEYCHAIN_SUFFIX_PUBLIC_KEY
CLI: --keychain-suffix-public-key

5.4.1.1.3 Plugin Loading/Validation

Plugin loading happens through NodeJS’s built-in module loader and the validation is performed by the Node Package
Manager tool (npm) which verifies the byte level integrity of all installed modules.

5.4.1.2 core-api

Contains interface definitions for the plugin architecture and other system level components that are to be shared among
many other packages. core-api is intended to be a leaf package meaning that it shouldn’t depend on other packages in
order to make it safe for any and all packages to depend on core-api without having to deal with circular dependency
issues.

5.4.1.3 API Client

Javascript API Client (bindings) for the RESTful HTTP API provided by cmd-api-server. Compatible with both
NodeJS and Web Browser (HTML 5 DOM + ES6) environments.

5.4.1.4 keychain

Responsible for persistently storing highly sensitive data (e.g. private keys) in an encrypted format.

For further details on the API surface, see the relevant section under Plugin Architecture.

5.4.1.5 tracing

Contains components for tracing, logging and application performance management (APM) of code written for the rest
of the Hyperledger Cactus packages.

5.4.1.6 audit

Components useful for writing and reading audit records that must be archived longer term and immutable. The latter
properties are what differentiates audit logs from tracing/logging messages which are designed to be ephemeral and to
support technical issues not regulatory/compliance/governance related issues.

76 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

5.4.1.7 document-storage

Provides structured or unstructured document storage and analytics capabilities for other packages such as audit and
tracing. Comes with its own API surface that serves as an adapter for different storage backends via plugins. By
default, Open Distro for ElasticSearch is used as the storage backend: https://aws.amazon.com/blogs/aws/new-
open-distro-for-elasticsearch/

The API surface provided by this package is kept intentionally simple and feature-poor so that different
underlying storage backends remain an option long term through the plugin architecture of Cactus.

5.4.1.8 relational-storage

Contains components responsible for providing access to standard SQL compliant persistent storage.

The API surface provided by this package is kept intentionally simple and feature-poor so that different
underlying storage backends remain an option long term through the plugin architecture of Cactus.

5.4.1.9 immutable-storage

Contains components responsible for providing access to immutable storage such as a distributed ledger with append-
only semantics such as a blockchain network (e.g. Hyperledger Fabric).

The API surface provided by this package is kept intentionally simple and feature-poor so that different
underlying storage backends remain an option long term through the plugin architecture of Cactus.

5.4.2 Deployment Diagram

Source file: ./docs/architecture/deployment-diagram.puml

5.4.3 Component Diagram

5.4.4 Class Diagram

5.4.5 Sequence Diagram - Transactions

TBD

8.8.5 5.5 Transaction Protocol Specification

5.5.1 Handshake Mechanism

TBD

8.8. 5. Architecture 77

Hyperledger Cactus, Release 1.0.0-rc.3

5.5.2 Transaction Protocol Negotiation

Participants in the transaction must have a handshake mechanism where they agree on one of the supported protocols to
use to execute the transaction. The algorithm looks an intersection in the list of supported algorithms by the participants.

Participants can insist on a specific protocol by pretending that they only support said protocol only. Protocols can
be versioned as the specifications mature. Adding new protocols must be possible as part of the plugin architecture
allowing the community to propose, develop, test and release their own implementations at will. The two initially
supported protocols shall be the ones that can satisfy the requirements for Fujitsu’s and Accenture’s implementations
respectively. Means for establishing bi-directional communication channels through proxies/firewalls/NAT wherever
possible

8.8.6 5.6 Plugin Architecture

Since our goal is integration, it is critical that Cactus has the flexibility of supporting most ledgers, even those that
don’t exist today.

A plugin is a self contained piece of code that implements a predefined interface pertaining to a specific
functionality of Cactus such as transaction execution.

Plugins are an abstraction layer on top of the core components that allows operators of Cactus to swap out implemen-
tations at will.

Backward compatibility is important, but versioning of the plugins still follows the semantic versioning
convention meaning that major upgrades can have breaking changes.

Plugins are implemented as ES6 modules (source code) that can be loaded at runtime from the persistent data store.
The core package is responsible for validating code signatures to guarantee source code integrity.

An overarching theme for all aspects that are covered by the plugin architecture is that there should be a dummy
implementation for each aspect to allow the simplest possible deployments to happen on a single, consumer grade
machine rather than requiring costly hardware and specialized knowledge.

Ideally, a fully testable/operational (but not production ready) Cactus deployment could be spun up on a
developer laptop with a single command (an npm script for example).

5.6.1 Ledger Connector Plugins

Success is defined as:

1. Adding support in Cactus for a ledger invented in the future requires no core code changes, but instead can be
implemented by simply adding a corresponding connector plugin to deal with said newly invented ledger.

2. Client applications using the REST API and leveraging the feature checks can remain 100% functional regardless
of the number and nature of deployed connector plugins in Cactus. For example: a generic money sending
application does not have to hardcode the supported ledgers it supports because the unified REST API interface
(fed by the ledger connector plugins) guarantees that supported features will be operational.

Because the features of different ledgers can be very diverse, the plugin interface has feature checks built into allowing
callers/client applications to determine programmatically, at runtime if a certain feature is supported or not on a
given ledger.

78 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

export interface LedgerConnector {
// method to verify a signature coming from a given ledger that this connector is␣

→˓responsible for connecting to.
verifySignature(message, signature): Promise<boolean>;

// used to call methods on smart contracts or to move assets between wallets
transact(transactions: Transaction[]);

getPermissionScheme(): Promise<PermissionScheme>;

getTransactionFinality(): Promise<TransactionFinality>;

addForeignValidator(): Promise<void>;
}

export enum TransactionFinality {
GUARANTEED = "GUARANTEED",
NOT_GUARANTEED = "NOT_GUARANTEED"

}

export enum PermissionScheme {
PERMISSIONED = "PERMISSIONED",
PERMISSIONLESS = "PERMISSIONLESS"

}

5.6.1.1 Ledger Connector Besu Plugin

This plugin provides Cactus a way to interact with Besu networks. Using this we can perform:

• Deploy Smart-contracts through bytecode.

• Build and sign transactions using different keystores.

• Invoke smart-contract functions that we have deployed on the network.

5.6.1.2 Ledger Connector Fabric Plugin

This plugin provides Cactus a way to interact with Fabric networks. Using this we can perform:

• Deploy Golang chaincodes.

• Make transactions.

• Invoke chaincodes functions that we have deployed on the network.

8.8. 5. Architecture 79

Hyperledger Cactus, Release 1.0.0-rc.3

5.6.1.3 Ledger Connector Quorum Plugin

This plugin provides Cactus a way to interact with Quorum networks. Using this we can perform:

• Deploy Smart-contracts through bytecode.

• Build and sign transactions using different keystores.

• Invoke smart-contract functions that we have deployed on the network.

5.6.2 HTLCs Plugins

Provides an API to deploy and interact with Hash Time Locked Contracts (HTLC), used for the exchange of assets in
different blockchain networks. HTLC use hashlocks and timelocks to make payments. Requires that the receiver of a
payment acknowledge having received this before a deadline or he will lose the ability to claim payment, returning this
to rhe payer.

5.6.2.1 HTLC-ETH-Besu Plugin

For the network Besu case, this plugin uses Leger Connector Besu Plugin to deploy an HTLC contarct on the network
and provides an API to interact with the HTLC ETH swap contracts.

5.6.2.2 HTLC-ETH-ERC20-Besu Plugin

For the network Besu case, this plugin uses Leger Connector Besu Plugin to deploy an HTLC and ERC20 contarct on
the network and provides an API to interact with this. This plugin allow Cactus to interact with ERC-20 tokens in
HTLC ETH swap contracts.

5.6.3 Identity Federation Plugins

Identity federation plugins operate inside the API Server and need to implement the interface of a common PassportJS
Strategy: https://github.com/jaredhanson/passport-strategy#implement-authentication

abstract class IdentityFederationPlugin {
constructor(options: any): IdentityFederationPlugin;
abstract authenticate(req: ExpressRequest, options: any);
abstract success(user, info);
abstract fail(challenge, status);
abstract redirect(url, status);
abstract pass();
abstract error(err);

}

80 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

5.6.3.1 X.509 Certificate Plugin

The X.509 Certificate plugin facilitates clients authentication by allowing them to present a certificate instead of oper-
ating with authentication tokens. This technically allows calling clients to assume the identities of the validator nodes
through the REST API without having to have access to the signing private key of said validator node.

PassportJS already has plugins written for client certificate validation, but we go one step further with this plugin by
providing the option to obtain CA certificates from the validator nodes themselves at runtime.

5.6.4 Key/Value Storage Plugins

Key/Value Storage plugins allow the higher-level packages to store and retrieve configuration metadata for a Cactus
cluster such as:

• Who are the active validators and what are the hosts where said validators are accessible over a network?

• What public keys belong to which validator nodes?

• What transactions have been scheduled, started, completed?

interface KeyValueStoragePlugin {
async get<T>(key: string): Promise<T>;
async set<T>(key: string, value: T): Promise<void>;
async delete<T>(key: string): Promise<void>;

}

5.6.5 Serverside Keychain Plugins

The API surface of keychain plugins is roughly the equivalent of the key/value Storage plugins, but under the hood
these are of course guaranteed to encrypt the stored data at rest by way of leveraging storage backends purpose built
for storing and managing secrets.

Possible storage backends include self hosted software [1] and cloud native services [2][3][4] as well. The goal of the
keychain plugins (and the plugin architecture at large) is to make Cactus deployable in different environments with
different backing services such as an on-premise data center or a cloud provider who sells their own secret management
services/APIs. There should be a dummy implementation as well that stores secrets in-memory and unencrypted
(strictly for development purposes of course). The latter will decrease the barrier to entry for new users and would be
contributors alike.

Direct support for HSM (Hardware Security Modules) is also something the keychain plugins could enable, but this is
lower priority since any serious storage backend with secret management in mind will have built-in support for dealing
with HSMs transparently.

By design, the keychain plugin can only be used by authenticated users with an active Cactus session. Users secrets
are isolated from each other on the keychain via namespacing that is internal to the keychain plugin implementations
(e.g. users cannot query other users namespaces whatsoever).

interface KeychainPlugin extends KeyValueStoragePlugin {
}

[1] https://www.vaultproject.io/ [2] https://aws.amazon.com/secrets-manager/ [3] https://aws.amazon.com/kms/ [4]
https://azure.microsoft.com/en-us/services/key-vault/

8.8. 5. Architecture 81

Hyperledger Cactus, Release 1.0.0-rc.3

5.6.6 Manual Consortium Plugin

This plugin is the default/simplest possible implementation of consortium management. It delegates the initial trust
establishment to human actors to be done manually or offline if you will.

Once a set of members and their nodes were agreed upon, a JSON document containing the consortium metadata can be
constructed which becomes an input parameter for the cactus-plugin-consortium-manual package’s implemen-
tation. Members bootstrap the consortium by configuring their Cactus nodes with the agreed upon JSON document
and start their nodes. Since the JSON document is used to generate JSON Web Signatures (JWS) as defined by RFC
7515 it is important that every consortium member uses the same JSON document representing the consortium.

Attention: JWS is not the same as JSON Web Tokens (JWT). JWT is an extension of JWS and so they can
seem very similar or even indistinguishable, but it is actually two separate things where JWS is the lower
level building block that makes JWT’s higher level use-cases possible. This is not related to Cactus itself,
but is important to be mentioned since JWT is very well known among software engineers while JWS is a
much less often used standard.

Example of said JSON document (the "consortium" property) as passed in to the plugin configuration can be seen
below:

{
"packageName": "@hyperledger/cactus-plugin-consortium-manual",
"options": {

"keyPairPem": "-----BEGIN PRIVATE KEY-----\nREDACTED\n-----END PRIVATE␣
→˓KEY-----\n",

"consortium": {
"name": "Example Cactus Consortium",
"id": "2ae136f6-f9f7-40a2-9f6c-92b1b5d5046c",
"mainApiHost": "http://127.0.0.1:4000",
"members": [

{
"id": "b24f8705-6da5-433a-b8c7-7d2079bae992",
"name": "Example Cactus Consortium Member 1",
"nodes": [

{
"nodeApiHost": "http://127.0.0.1:4000",
"publicKeyPem": "-----BEGIN PUBLIC KEY-----\

→˓nMFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEtDeq7BgpelfsX7WKiSb7Lhxp8VeS6YY/\
→˓nInbYuTgwZ8ykGs2Am2fM03aeMX9pYEzaeOVRU6ptwaEBFYX+YftCSQ==\n-----END PUBLIC KEY-----\n"

}
]

}
]

}
}

}

The configuration above will cause the Consortium JWS REST API endpoint (callable via the API Client) to respond
with a consortium JWS that looks similar to what is pasted below.

Code examples of how to use the API Client to call this endpoint can be seen at ./packages/cactus-cockpit/src/
app/consortium-inspector/consortium-inspector.page.ts

{
"payload":

→˓"eyJjb25zb3J0aXVtIjp7ImlkIjoiMmFlMTM2ZjYtZjlmNy00MGEyLTlmNmMtOTJiMWI1ZDUwNDZjIiwibWFpbkFwaUhvc3QiOiJodHRwOi8vMTI3LjAuMC4xOjQwMDAiLCJtZW1iZXJzIjpbeyJpZCI6ImIyNGY4NzA1LTZkYTUtNDMzYS1iOGM3LTdkMjA3OWJhZTk5MiIsIm5hbWUiOiJFeGFtcGxlIENhY3R1cyBDb25zb3J0aXVtIE1lbWJlciAxIiwibm9kZXMiOlt7Im5vZGVBcGlIb3N0IjoiaHR0cDovLzEyNy4wLjAuMTo0MDAwIiwicHVibGljS2V5UGVtIjoiLS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS1cbk1GWXdFQVlIS29aSXpqMENBUVlGSzRFRUFBb0RRZ0FFdERlcTdCZ3BlbGZzWDdXS2lTYjdMaHhwOFZlUzZZWS9cbkluYll1VGd3Wjh5a0dzMkFtMmZNMDNhZU1YOXBZRXphZU9WUlU2cHR3YUVCRllYK1lmdENTUT09XG4tLS0tLUVORCBQVUJMSUMgS0VZLS0tLS1cbiJ9XX1dLCJuYW1lIjoiRXhhbXBsZSBDYWN0dXMgQ29uc29ydGl1bSJ9fQ
→˓", (continues on next page)

82 Chapter 8. Whitepaper

https://tools.ietf.org/html/rfc7515#section-7.2
https://tools.ietf.org/html/rfc7515#section-7.2

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

"signatures": [
{

"protected":
→˓"eyJpYXQiOjE1OTYyNDQzMzQ0NTksImp0aSI6IjM3NmJjMzk0LTBlYWMtNDcwZi04NjliLThkYWIzNDRmNmY3MiIsImlzcyI6Ikh5cGVybGVkZ2VyIENhY3R1cyIsImFsZyI6IkVTMjU2SyJ9
→˓",

"signature": "ltnDyOe9WSdCk6f5Op8XlcnFoXUp3yJZgImsAvERnxWM-
→˓eeL6eX0MnCtfC5r3q6knt4kTTaUv8536SMCka_YyA"

}
]

}

The same JWS after being decoded looks like this:

{
"payload": {

"consortium": {
"id": "2ae136f6-f9f7-40a2-9f6c-92b1b5d5046c",
"mainApiHost": "http://127.0.0.1:4000",
"members": [

{
"id": "b24f8705-6da5-433a-b8c7-7d2079bae992",
"name": "Example Cactus Consortium Member 1",
"nodes": [

{
"nodeApiHost": "http://127.0.0.1:4000",
"publicKeyPem": "-----BEGIN PUBLIC KEY-----\

→˓nMFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEtDeq7BgpelfsX7WKiSb7Lhxp8VeS6YY/\
→˓nInbYuTgwZ8ykGs2Am2fM03aeMX9pYEzaeOVRU6ptwaEBFYX+YftCSQ==\n-----END PUBLIC KEY-----\n"

}
]

}
],
"name": "Example Cactus Consortium"

}
},
"signatures": [

{
"protected": {

"iat": 1596244334459,
"jti": "376bc394-0eac-470f-869b-8dab344f6f72",
"iss": "Hyperledger Cactus",
"alg": "ES256K"

},
"signature": "ltnDyOe9WSdCk6f5Op8XlcnFoXUp3yJZgImsAvERnxWM-

→˓eeL6eX0MnCtfC5r3q6knt4kTTaUv8536SMCka_YyA"
}

]
}

The below sequence diagram demonstrates a real world example of how a consortium between two business organiza-
tions (who both operate their own distributed ledgers) can be formed manually and then operated through the plugin
discussed here. There’s many other ways to perform the initial agreement that happens offline, but a concrete, non-
generic example is provided here for ease of understanding:

8.8. 5. Architecture 83

Hyperledger Cactus, Release 1.0.0-rc.3

5.6.7 Test Tooling

Provides Cactus with a tool to test the diferent plugins of the proyect.

8.9 6. Identities, Authentication, Authorization

Cactus aims to provide a unified API surface for managing identities of an identity owner. Developers using the
Cactus Service API for their applications can support one or both of the below requirements:

1. Applications with a focus on access control and business process efficiency (usually in the enterprise)

2. Applications with a focus on individual privacy (usually consumer-based applications)

The following sections outline the high-level features of Cactus that make the above vision reality.

An end user (through a user interface) can issue API requests to

• register a username+password account (with optional MFA) within Cactus.

• associate their wallets to their Cactus account and execute transactions involving those registered wallet (trans-
action signatures performed either locally or remotely as explained above).

• execute a trade which executes a set of transactions across integrated Ledgers. Cactusmay also executes recovery
transaction(s) when the trade was failed with some reason. For example, recovery transactions may be executed
to reverse executed transaction result using intermediate account which provide escrow trading service.

8.9.1 6.1 Definition of Identities in Cactus

Various identities are used at Cactus Service API.

Cactus user ID

• ID for user (behind web service application) to execute a Service API call.

• Service provider assign the role(s) and access right(s) of user in integrated service as part of Business Logic
Plugin.

• The user can add Wallet(s) which is associated with account address and/or key.

Wallet ID

• ID for the user identity which is associated with authentication credential at integrated Ledger.

• It is recommended to store temporary credential here allowing minimal access to operate Ledger instead of
giving full access with primary secret.

• Service API enables user to add/update/delete authentication credential for the Wallet.

Ledger ID

• ID for Ledger Plugin which is used at Wallet

• Ledger ID is assigned by administrator of integrated service, and provided for user to configure their own Wallet
settings.

• The connectivity settings associated with the Ledger ID is also configured at Ledger Plugin by the adminis-
trator.

Business Logic ID

• ID for business logic to be invoked by Cactus user.

84 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

• Each business logic should be implemented to execute necessary transactions on integrated Ledgers without
any interaction with user during its execution.

• Business logic may require user to setup access permission with storing credential before executing business
logic call.

8.9.2 6.2 Transaction Signing Modes, Key Ownership

An application developer using Cactus can choose to enable users to sign their transactions locally on their user
agent device without disclosing their private keys to Cactus or remotely where Cactus stores private keys server-side,
encrypted at rest, made decryptable through authenticating with their Cactus account. Each mode comes with its own
pros and cons that need to be carefully considered at design time.

6.2.1 Client-side Transaction Signing

Usually a better fit for consumer-based applications where end users have higher expectation of individual privacy.

Pros

• Keys are not compromised when a Cactus deployment is compromised

• Operator of Cactus deployment is not liable for breach of keys (same as above)

• Reduced server-side complexity (no need to manage keys centrally)

Cons

• User experience is sub-optimal compared to sever side transaction signing

• Users can lose access permanently if they lose the key (not acceptable in most enterprise/professional use cases)

6.2.2 Server-side Transaction Signing

Usually a better fit for enterprise applications where end users have most likely lowered their expectations of individual
privacy due to the hard requirements of compliance, governance, internal or external policy enforcement.

Pros

• Frees end users from the burden of managing keys themselves (better user experience)

– Improved compliance, governance

Cons

• Server-side breach can expose encrypted keys stored in the keychain

8.9. 6. Identities, Authentication, Authorization 85

Hyperledger Cactus, Release 1.0.0-rc.3

8.9.3 6.3 Open ID Connect Provider, Identity Provider

Cactus can authenticate users against third party Identity Providers or serve as an Identity Provider itself. Everything
follows the well-established industry standards of Open ID Connect to maximize information security and reduce the
probability of data breaches.

8.9.4 6.4 Server-side Keychain for Web Applications

There is a gap between traditional web/mobile applications and blockchain applications (web 2.0 and 3.0 if you will)
authentication protocols in the sense that blockchain networks rely on private keys belonging to a Public Key Infras-
tructure (PKI) to authenticate users while traditional web/mobile applications mostly rely on a centralized authority
storing hashed passwords and the issuance of ephemeral tokens upon successful authentication (e.g. successful login
with a password). Traditional (Web 2.0) applications (that adhering security best practices) use server-side sessions
(web) or secure keychains provided by the operating system (iOS, Android, etc.) The current industry standard and
state of the art authentication protocol in the enterprise application development industry is Open ID Connect (OIDC).

To successfully close the gap between the two worlds, Cactus comes equipped with an OIDC identity provider and a
server-side key chain that can be leveraged by end user applications to authenticate once against Hyperledger Cactus
and manage identities on other blockchains through that single Hyperledger Cactus identity. This feature is important
for web applications which do not have secure offline storage APIs (HTML localStorage is not secure).

Example: A user can register for a Hyperledger Cactus account, import their private keys from their Fabric/Ethereum
wallets and then have access to all of those identities by authenticating once only against Cactus which will result in
a server-side session (HTTP cookie) containing a JSON Web Token (JWT).

Native mobile applications may not need to use the server-side keychain since they usually come equipped
with an OS provided one (Android, iOS does).

In web 2.0 applications the prevalent authentication/authorization solution is Open ID Connect which bases authenti-
cation on passwords and tokens which are derived from the passwords. Web 3.0 applications (decentralized apps or
DApps) which interact with blockchain networks rely on private keys instead of passwords.

8.10 7. Terminology

Application user: The user who requests an API call to a Hyperledger Cactus application or smart contract. The API
call triggers the sending of the transaction to the remote ledger.

Hyperledger Cactus Web application or Smart contract on a blockchain: The entity executes business logic and
provide integration services that include multiple blockchains.

Tx verifier: The entity verifies the signature of the transaction data transmitted over the secure bidirectional channel.
Validated transactions are processed by the Hyperledger Cactus Web application or Smart Contract to execute the
integrated business logic.

Tx submitter: The entity submits the remote transaction to the API server plug-in on one of the ledgers.

API Server: A Cactus package that is the backbone of the plugin architecture and the host component for all plugins
with the ability to automaticaly wire up plugins that come with their own web services (REST or asynchronous APIs
through HTTP or WebSockets for example)

Cactus Node: A set of identically configured API servers behind a single network host where the set size is customiz-
able from 1 to infinity with the practical maximum being much lower of course. This logical distinction between node
and API server is important because it allows consortium members to abstract away their private infrastructure details
from the public consortium definition.

86 Chapter 8. Whitepaper

Hyperledger Cactus, Release 1.0.0-rc.3

For example if a consortium member wants to have a highly available, high throughput service, they will be forced to
run a cluster of API servers behind a load balancer and/or reverse proxy to achieve these system properties and their
API servers may also be in an auto-scaling group of a cloud provider or (in the future) even run as Lambda functions.
To avoid having to update the consortium definition (which requires a potentially costly consesus from other members)
every time let’s say an auto-scaling group adds a new API server to a node, the consortium member can define their
presence in the consortium by declaring a single Cactus Node and then customize the underlying deployment as they
see fit so long as they ensure that the previously agreed upon keys are used by the node and it is indeed accessible
through the network host as declared by the Cactus Node. To get a better understanding of the various, near-infinite
deplyoment scenarios, head over to the Deployment Scenarios sub-section of the Architecture top level section.

Validator: A module of Hyperledger Cactus which verifies validity of transaction to be sent out to the blockchain
application.

Lock asset: An operation to the asset managed on blockchain ledger, which disable further operation to targeted asset.
The target can be whole or partial depends on type of asset.

Abort: A state of Hyperledger Cactus which is determined integrated ledger operation is failed, and Hyperledger
Cactus will execute recovery operations.

Integrated ledger operation: A series of blockchain ledger operations which will be triggered by Hyperledger Cactus.
Hyperledger Cactus is responsible to execute ‘recovery operations’ when ‘Abort’ is occurred.

Restore operation(s): Single or multiple ledger operations which is executed by Hyperledger Cactus to restore the
state of integrated service before start of integrated operation.

End User: A person (private citizen or a corporate employee) who interacts with Hyperledger Cactus and other ledger-
related systems to achieve a specific goal or complete a task such as to send/receive/exchange money or data.

Business Organization: A for-profit or non-profit entity formed by one or more people to achieve financial gain or
achieve a specific (non-financial) goal. For brevity, business organization may be shortened to organization throughout
the document.

Identity Owner: A person or organization who is in control of one or more identities. For example, owning two
separate email accounts by one person means that said person is the identity owner of two separate identities (the email
accounts). Owning cryptocurrency wallets (their private keys) also makes one an identity owner.

Identity Secret: A private key or a password that - by design - is only ever known by the identity owner (unless stolen).

Credentials: Could mean user a authentication credentials/identity proofs in an IT application or any other creden-
tials in the traditional sense of the word such as a proof that a person obtained a bachelor’s degree or a PhD.

Ledger/Network/Chain: Synonymous words meaning referring largely to the same thing in this paper.

OIDC: Open ID Connect authentication protocol

PKI: Public Key Infrastructure

MFA: Multi Factor Authentication

8.11 8. Related Work

Blockchain interoperability is emerging as one of the crucial features of blockchain technology A recent survey clas-
sifies blockchain interoperability studies in three categories: Cryptocurrency-directed interoperability approaches,
Blockchain Engines, and Blockchain Connectors [5]. Each category is further divided into sub-categories based on
defined criteria. Each category serves particular use cases.

8.11. 8. Related Work 87

Hyperledger Cactus, Release 1.0.0-rc.3

Cryptocurrency-directed interoperability approaches identify and define different strategies for chain interoperability
across public blockchains, most of them implementing cryptocurrencies.

Blockchain engines are frameworks that provide reusable data, network, consensus, incentive, and contract layers for
the creation of customized blockchains, serving general use-cases. Emerging blockchains are, for example, the Cosmos
Network and Polkadot.

The Blockchain Connector category is composed of interoperability solutions that are not cryptocurrency-directed
or blockchain engines. Several sub-categories exist: Trusted Relays, Blockchain Agnostic Protocols, Blockchain of
Blockchains, and Blockchain Migrators”.

While Hyperledger Cactus has caracteristics from the the three categories, it can be considered a Blockchain Con-
nector (namely a Trusted Relay). In particular, Cactus focuses on providing multiple use case scenarios via a trusted
consortium. Trusted relays allow the discovery of the target blockchains, appearing often in a permissioned blockchain
environment, where cross-blockchain transactions are routed by trusted escrow parties. Thus, Cactus supports devel-
opers at building cross-chain dApps.

Depending on the validator plugin, the trust on the relay can be decentralized, making Cactus a decentralized, general-
purpose, trustless relay. The blockchain migrator feature paves the way for building a solution that performs data
migration across blockchains.

8.12 9. References

1: Heterogeneous System Architecture - Wikipedia, Retrieved at: 11th of December 2019

2: E Scheid and Burkhard Rodrigues, B Stiller. 2019. Toward a policy-based blockchain agnostic framework. 16th
IFIP/IEEE International Symposium on Integrated Network Management (IM 2019) (2019)

3: Philipp Frauenthaler, Michael Borkowski, and Stefan Schulte. 2019. A Framework for Blockchain Interoperability
and Runtime Selection.

88 Chapter 8. Whitepaper

https://en.wikipedia.org/wiki/Heterogeneous_System_Architecture

Hyperledger Cactus, Release 1.0.0-rc.3

4: H.M.N. Dilum Bandara, Xiwei Xu, and Ingo Weber. 2020. Patterns for blockchain data migration. European Conf.
on Pattern Languages of Programs 2020 (EuroPLoP 2020).

5: Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Surveyon Blockchain Interoperability: Past, Present,
and Future Trends,”arXiv,2020. [Online]. Available: http://arxiv.org/abs/2005.14282

8.13 10. Recommended Reference

Please use the following BibTex entry to cite this whitepaper:

@article{hyperledgercactus, title={Hyperledger Cactus Whitepaper v0.1}, author={Montgomery, Hart and
Borne-Pons, Hugo and Hamilton, Jonathan and Bowman, Mic and Somogyvari, Peter and Fujimoto,
Shingo and Takeuchi, Takuma and Kuhrt, Tracy and Belchior, Rafael}, journal={URL: https://github.
com/hyperledger/cactus/blob/main/whitepaper/whitepaper. md}, year={2020} }

8.13. 10. Recommended Reference 89

https://arxiv.org/abs/1906.00239

Hyperledger Cactus, Release 1.0.0-rc.3

90 Chapter 8. Whitepaper

CHAPTER

NINE

REGULATORY AND INDUSTRY INITIATIVES READING LIST

A non-exhaustive list of industry standards and regulations/regulatory plans that one could read through if they are try-
ing to get a comprehensive picture of what it takes from the non-technical standpoint to interoperate existing productive
systems in finance, trade and more.

While these documents are not dealing with technological problems, even just the awareness of their existence could
still add tremendous value to someone who is looking to implement some sort of integration/interoperability between
different DLTs or a DLT and any pre-existing centralized system.

9.1 MICA European crypto assets regulation (coming into force by
2023)

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020PC0593

9.2 Pilot Regime for DLT market infrastructure

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020PC0594&from=EN

9.3 Paperless trade framework (UN / UNESCAP more on APAC now
but supposed to expand in EU) for bilateral cooperation

https://readiness.digitalizetrade.org/

9.4 ICC Digital Standard Initiative (Private sector)

https://iccwbo.org/media-wall/news-speeches/digital-trade-standards-initiative-launches-under-the-umbrella-of-icc/

91

Hyperledger Cactus, Release 1.0.0-rc.3

9.5 BAFT Digital Ledger Payment Commitment - Technical and Busi-
ness Best Practices (Private sector - Banking Industry)

https://www.baft.org/wp-content/uploads/2021/03/baft-dlpc-technical-bps-v1-1.pdf

https://www.baft.org/wp-content/uploads/2021/03/baft-dlpc-business-bps-v1-1.pdf

9.6 DCSA Digital Container Shipping Association (Private sector -
shipping industry)

https://dcsa.org/dcsa-publishes-standards-for-the-bill-of-lading/

9.7 MSB Networked Supervision

https://www.occ.gov/news-issuances/news-releases/2021/nr-occ-2021-2.html

9.8 OCC Interpretative letter on the use of DA for payments

https://www.occ.gov/news-issuances/news-releases/2021/nr-occ-2021-2a.pdf

9.9 Open Digital Asset Protocol from IETF (Thanks to Rafael Belchior
for these)

https://datatracker.ietf.org/doc/draft-hargreaves-odap/ https://datatracker.ietf.org/doc/draft-belchior-gateway-recovery/

There are some more standards in section 6.2 of https://deepai.org/publication/a-survey-on-blockchain-interoperability-
past-present-and-future-trends

92 Chapter 9. Regulatory and Industry Initiatives Reading List

CHAPTER

TEN

CACTUS COMPONENTS

This section contains the components to form Hyperledger Cactus.

10.1 @hyperledger/cactus-api-client

• Summary

• Usage

– Routing to Cactus Node with connector to specific ledger

∗ Leverage the ConsortiumDatabase for discovery

∗ Use a provided mainApiHost and ledgerId

∗ Use the API host of a node directly

• Public API Surface

– DefaultConsortiumProvider

– ApiClient

10.1.1 Summary

The Hyperledger Cactus API Client package is designed to be a generic extension with convenience fea-
tures wrapped around the [typescript-axios flavored API clients](https://github.com/OpenAPITools/openapi-
generator/blob/v5.2.1/docs/generators/typescript-axios.md) that we auto-generate and ship with each web service-
enabled plugin such as the API clients of the

• Manual Consortium Plugin Typescript Axios API Client

• Besu Connector Typescript Axios API Client

• Corda Connector Typescript Axios API Client

• Fabric Connector Typescript Axios API Client

• Quorum Connector Typescript Axios API Client

• API Server Typescript Axios API Client

• Vault Keychain Plugin Typescript Axios API Client

The code generation for the listed code folders above is done by the OpenAPI Generator tool that can convert OpenAPI
V3 json specifications of ours straight into the program code of the API clients.

93

https://github.com/OpenAPITools/openapi-generator/blob/v5.2.1/docs/generators/typescript-axios.md
https://github.com/OpenAPITools/openapi-generator/blob/v5.2.1/docs/generators/typescript-axios.md
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-consortium-manual/src/main/typescript/generated/openapi/typescript-axios
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-ledger-connector-besu/src/main/typescript/generated/openapi/typescript-axios
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-ledger-connector-corda/src/main/typescript/generated/openapi/typescript-axios
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-ledger-connector-fabric/src/main/typescript/generated/openapi/typescript-axios
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-ledger-connector-quorum/src/main/typescript/generated/openapi/typescript-axios
https://github.com/hyperledger/cactus/tree/main/packages/cactus-cmd-api-server/src/main/typescript/generated/openapi/typescript-axios
https://github.com/hyperledger/cactus/tree/main/packages/cactus-plugin-keychain-vault/src/main/typescript/generated/openapi/typescript-axios
https://github.com/OpenAPITools/openapi-generator

Hyperledger Cactus, Release 1.0.0-rc.3

The above means that the ApiClient class is not the one containing the implementation responsible for executing all
the supported API calls by a Cactus node (which would make it a monolith, something that we try to avoid as it is the
opposite of a flexible plugin architecture)

For example you can use the @hyperledger/cactus-api-client node package to perform Cactus node discovery
based on ledger IDs (that can be obtained from the ConsortiumDatabase as defined by the generated models of the
@hyperledger/cactus-core-api package.

While you can generate API Clients for the Cactus API specifications in any supported langauge of the
OpenAPI Generator the features provided by this package will have to be developed separately (if not
already done by the Cactus maintainers). Currently the only implementation of the abstract API Client and
its features (node discovery) is in Typescript (e.g. the @hyperledger/cactus-api-client package).

10.1.2 Usage

Routing to Cactus Node with connector to specific ledger

Let’s say you have a consortium with several members who all have their own ledgers deployed as well. The
ConsortiumDatabase will therefore contain the entities pertaining to these entities (such as the ledgers or the mem-
bers themselves) meaning that if you are developing an application that needs to perform operations on one of the
ledgers in the consortium then you have a couple of different ways of obtaining an API client to do just that:

Leverage the ConsortiumDatabase for discovery

import { ApiClient } from "@hyperledger/cactus-api-client";

import { ConsortiumDatabase, Ledger, LedgerType } from "@hyperledger/cactus-core-api";

import { PluginRegistry } from "@hyperledger/cactus-core";

import { DefaultApi as QuorumApi } from "@hyperledger/cactus-plugin-ledger-connector-
→˓quorum";

const mainFn = async () => {
const ledgerId = "theIdOfYourLedgerInTheConsortiumDatabase";

// How you obtain a consortium provider is dependent on which consortium
// plugin you use and your exact deployment scenario
const consortiumProvider: IAsyncProvider<ConsortiumDatabase> = ...;
const consortiumDatabase: ConsortiumDatabase = await consortiumProvider.get();
const consortium = consortiumDatabase.consortium[0];

const mainApiClient = new ApiClient({ basePath: consortium.mainApiHost });

// This client is now configured to point to a node that has a connector to
// the ledger referenced by `ledgerId`
const apiClient = await mainApiClient.ofLedger(ledgerId, QuorumApi);

// Use the client to perform any supported operation on the ledger
};

mainFn();

94 Chapter 10. Cactus Components

https://github.com/hyperledger/cactus/blob/main/packages/cactus-core-api/src/main/typescript/generated/openapi/typescript-axios/api.ts
https://github.com/OpenAPITools/openapi-generator

Hyperledger Cactus, Release 1.0.0-rc.3

Use a provided mainApiHost and ledgerId

import { ApiClient } from "@hyperledger/cactus-api-client";

import { ConsortiumDatabase, Ledger, LedgerType } from "@hyperledger/cactus-core-api";

import { PluginRegistry } from "@hyperledger/cactus-core";

import { DefaultApi as QuorumApi } from "@hyperledger/cactus-plugin-ledger-connector-
→˓quorum";

const mainFn = async () => {
const ledgerId = "theIdOfYourLedgerInTheConsortiumDatabase";
const consortiumMainApiHost = "https://cactus.example.com";

const mainApiClient = new ApiClient({ basePath: consortiumMainApiHost });

// This client is now configured to point to a node that has a connector to
// the ledger referenced by `ledgerId`
const apiClient = await mainApiClient.ofLedger(ledgerId, QuorumApi);

}

mainFn();

Use the API host of a node directly

import { ApiClient } from "@hyperledger/cactus-api-client";

import { ConsortiumDatabase, Ledger, LedgerType } from "@hyperledger/cactus-core-api";

import { PluginRegistry } from "@hyperledger/cactus-core";

import { DefaultApi as QuorumApi } from "@hyperledger/cactus-plugin-ledger-connector-
→˓quorum";

const mainFn = async () => {
const nodeApiHost = "https://my-node.cactus.example.com";

const mainApiClient = new ApiClient({ basePath: nodeApiHost });

// This client is now configured to point to a node that has a connector to the ledger␣
→˓of your choice
const apiClient = await mainApiClient.extendWith(QuorumApi);

}

mainFn();

10.1. @hyperledger/cactus-api-client 95

Hyperledger Cactus, Release 1.0.0-rc.3

10.1.3 Public API Surface

DefaultConsortiumProvider

Builds the default Consortium provider that can be used by this object to retrieve the Cactus Consortium metadata
object when necessary (one such case is when we need information about the consortium nodes to perform routing
requests to a specific ledger via a connector plugin, but later other uses could be added as well).

The DefaultConsortiumProvider class leverages the simplest consortium plugin that we have at the time of this writ-
ing: @hyperledger/cactus-plugin-consortium-manual which holds the consortium metadata as pre-configured by the
consortium operators.

The pattern we use in the ApiClient class is that you can inject your own IAsyncProvider<Consortium> implemen-
tation which then will be used for routing information and in theory you can implement completely arbitrary consortium
management in your own consortium plugins which then Cactus can use and leverage for the routing. This allows us to
support any exotic consortium management algorithms that people may come up with such as storing the consortium
definition in a multi-sig smart contract or have the list of consortium nodes be powered by some sort of automatic
service discovery or anything else that people might think of.

ApiClient

Class responsible for providing additional functionality to the DefaultApi classes of the generated clients (OpenAPI
generator / typescript-axios).

Each package (plugin) can define it’s own OpenAPI spec which means that they all can ship with their own DefaultApi
class that is generated directly from the respective OpenAPI spec of the package/plugin.

The functionality provided by this class is meant to be common traints that can be useful for all of those different
DefaultApi implementations.

One such common trait is the client side component of the routing that decides which Cactus node to point the
ApiClient towards (which is in itself ends up being the act of routing).

@see — https ://github.com/OpenAPITools/openapi-generator/blob/v5.0.0-beta2/modules/openapi-
generator/src/main/resources/typescript-axios/apiInner.mustache#L337

@see — https ://github.com/OpenAPITools/openapi-generator/blob/v5.0.0/docs/generators/typescript-axios.md

10.2 @hyperledger/cactus-cmd-api-server

• Summary

• Usage

– Basic Example

– Remote Plugin Imports at Runtime Example

– Complete Example

• Deployment Scenarios

– Production Deployment Example

– Low Resource Deployment Example

• Containerization

– Building the container image locally

96 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

– Running the container image locally

– Testing API calls with the container

• Prometheus Exporter

– Usage Prometheus

– Prometheus Integration

– Shutdown Hook

– Helper code - response.type.ts - data-fetcher.ts - metrics.ts

• FAQ

– What is the difference between a Cactus Node and a Cactus API Server?

– Is the API server horizontally scalable?

– Does the API server automatically protect me from malicious plugins?

– Can I use the API server with plugins deployed as a service?

10.2.1 Summary

This package is part of the Hyperledger Cactus blockchain integration framework and is used as a shell/container of
sort for housing different Cactus plugins (which all live in their own npm packages as well).

The API server gives you for free the following benefits, should you choose to use it:

1. Automatic wiring of API endpoints for Cactus plugins which implement the IPluginWebService Typescript
interface

2. Lightweight inversion of control container provided to plugins in the form of the PluginRegistry so that plug-
ins can depend on each other in a way that each plugin instance can be uniquely identified and obtained by other
plugins. A great example of this in action is ledger connector plugins frequently using the PluginRegistry
to look up instances of keychain plugins to get access to secrets that are needed for the connector plugins to
accomplish certain tasks such as cryptographically signing some information or SSH-ing into a server instance
in order to upload and deploy binary (or otherwise) artifacts of smart contracts.

10.2.2 Usage

Like with most parts of the framework in Cactus, using the ApiServer is optional.

To see the ApiServer in action, the end to end tests of the framework are a great place to start. A few excerpts that
regularly occur in said tests can be seen below as well for the reader’s convenience.

One of our design principles for the framework is secure by default which means that the API servers

1. assumes TLS is enabled by default and

2. cross-origin resource sharing is disabled completely

10.2. @hyperledger/cactus-cmd-api-server 97

Hyperledger Cactus, Release 1.0.0-rc.3

Basic Example

#!/usr/bin/env node

import { ApiServer } from "../api-server";
import { ConfigService } from "../config/config-service";
import { Logger, LoggerProvider } from "@hyperledger/cactus-common";

const log: Logger = LoggerProvider.getOrCreate({
label: "cactus-api",
level: "INFO",

});

const main = async () => {
const configService = new ConfigService();
const config = await configService.getOrCreate();
const serverOptions = config.getProperties();

LoggerProvider.setLogLevel(serverOptions.logLevel);

if (process.argv[2].includes("help")) {
const helpText = ConfigService.getHelpText();
console.log(helpText);
log.info(`Effective Configuration:`);
log.info(JSON.stringify(serverOptions, null, 4));

} else {
const apiServer = new ApiServer({ config: serverOptions });
await apiServer.start();

}
};

export async function launchApp(): Promise<void> {
try {
await main();
log.info(`Cactus API server launched OK `);

} catch (ex) {
log.error(`Cactus API server crashed: `, ex);
process.exit(1);

}
}

if (require.main === module) {
launchApp();

}

98 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

Remote Plugin Imports at Runtime Example

import { PluginImportType, PluginImportAction } from "@hyperledger/cactus-core-api";
import { ApiServer } from "@hyperledger/cactus-cmd-api-server";
import { ConfigService } from "@hyperledger/cactus-cmd-api-server";
import { Logger, LoggerProvider } from "@hyperledger/cactus-common";

const main = async () => {

const configService = new ConfigService();
const apiServerOptions = await configService.newExampleConfig();
// If there is no configuration file on the file system, just set it to empty string
apiServerOptions.configFile = "";
// Enable CORS for
apiServerOptions.apiCorsDomainCsv = "your.domain.example.com";
apiServerOptions.apiPort = 3000;
apiServerOptions.cockpitPort = 3100;
apiServerOptions.grpcPort = 5000;
// Disble TLS (or provide TLS certs for secure HTTP if you are deploying to production)
apiServerOptions.apiTlsEnabled = false;
apiServerOptions.plugins = [
{
// npm package name of the plugin you are installing
// Since this will be imported at runtime, you are responsible for
// installing the package yourself prior to launching the API server.
packageName: "@hyperledger/cactus-plugin-keychain-vault",
// The REMOTE value means that a different plugin factory will be imported and
// called to obtain the plugin instance. This way plugins can support them
// being imported by the API server regardless of the language the plugin
// was written in.
type: PluginImportType.REMOTE,
// The INSTALL value means that the plugin will be installed instead of
// only instantiate it
action: PluginImportAction.INSTALL,
// The options that will be passed in to the plugin factory
options: {
keychainId: "_keychainId_",
instanceId: "_instanceId_",
remoteConfig: configuration,

},
},

];
const config = await configService.newExampleConfigConvict(apiServerOptions);

const apiServer = new ApiServer({
config: config.getProperties(),

});

// start the API server here and you are ready to roll
};

export async function launchApp(): Promise<void> {
try {

(continues on next page)

10.2. @hyperledger/cactus-cmd-api-server 99

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

await main();
log.info(`Cactus API server launched OK `);

} catch (ex) {
log.error(`Cactus API server crashed: `, ex);
process.exit(1);

}
}

if (require.main === module) {
launchApp();

}

Complete Example

For a complete example of how to use the API server, read all the code of the supply chain example’s backend package:

https://github.com/hyperledger/cactus/tree/main/examples/cactus-example-supply-chain-backend/src/main/typescript

10.2.3 Deployment Scenarios

There’s a set of building blocks (members, nodes, API server processes, plugin instances) that you can use when
defining (founding) a consortium and these building blocks relate to each other in a way that can be expressed with an
entity relationship diagram which can be seen below. The composability rules can be deducted from how the diagram
elements (entities) are connected (related) to each other, e.g. the API server process can have any number of plugin
instances in it and a node can contain any number of API server processes, and so on until the top level construct is
reached: the consortium.

Consortium management does not relate to achieving consensus on data/transactions involving individual
ledgers, merely about consensus on the metadata of a consortium.

100 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

10.2. @hyperledger/cactus-cmd-api-server 101

Hyperledger Cactus, Release 1.0.0-rc.3

Now, with these composability rules in mind, let us demonstrate a few different deployment scenarios (both expected
and exotic ones) to showcase the framework’s flexibility in this regard.

Production Deployment Example

Many different configurations are possible here as well. One way to have two members form a consortium and both of
those members provide highly available, high throughput services is to have a deployment as shown on the below figure.
What is important to note here is that this consortium has 2 nodes, 1 for each member and it is irrelevant how many
API servers those nodes have internally because they all respond to requests through the network host/web domain that
is tied to the node. One could say that API servers do not have a distinguishable identity relative to their peer API
servers, only the higher-level nodes do.

102 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

10.2. @hyperledger/cactus-cmd-api-server 103

Hyperledger Cactus, Release 1.0.0-rc.3

Low Resource Deployment Example

This is an example to showcase how you can pull up a full consortium even from within a single operating system
process (API server) with multiple members and their respective nodes. It is not something that’s recommended for a
production grade environment, ever, but it is great for demos and integration tests where you have to simulate a fully
functioning consortium with as little hardware footprint as possible to save on time and cost.

The individual nodes/API servers are isolated by listening on seperate TCP ports of the machine they are hosted on:

104 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

10.2. @hyperledger/cactus-cmd-api-server 105

Hyperledger Cactus, Release 1.0.0-rc.3

10.2.4 Containerization

Building the container image locally

In the Cactus project root say:

DOCKER_BUILDKIT=1 docker build -f ./packages/cactus-cmd-api-server/Dockerfile . -t cas -
→˓t cactus-api-server

Build with a specific version of the npm package:

DOCKER_BUILDKIT=1 docker build --build-arg NPM_PKG_VERSION=main -f ./packages/cactus-cmd-
→˓api-server/Dockerfile . -t cas -t cactus-api-server

Running the container image locally

Before running the examples here you need to build the image locally. See section Building the container image locally
for details on how to do that.

Once you’ve built the container, the following commands should work:

• Launch container - no plugins, default configuration

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
cas

• Launch container with plugins of your choice (keychain, consortium connector, etc.)

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
cas \
./node_modules/.bin/cactusapi \
--plugins='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-fabric

→˓", "type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.
→˓hyperledger.cactus.plugin_import_action.INSTALL", "options": { "connectionProfile
→˓": {}, "instanceId": "some-unique-instance-id"}}]'

• Launch container with plugin configuration as an environment variable:

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--env PLUGINS='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-besu

→˓", "type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.
→˓hyperledger.cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost":
→˓"http://localhost:8545", "instanceId": "some-unique-besu-connector-instance-id"}}]
→˓' \
cas

106 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

• Launch container with plugin configuration as a CLI argument:

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
cas \
./node_modules/.bin/cactusapi \
--plugins='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-besu",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.
→˓hyperledger.cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost":
→˓"http://localhost:8545", "instanceId": "some-unique-besu-connector-instance-id"}}]
→˓'

• Launch container with configuration file mounted from host machine:

echo '[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-besu", "type":
→˓"org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost": "http://
→˓localhost:8545", "instanceId": "some-unique-besu-connector-instance-id"}}]' >␣
→˓cactus.json

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--mount type=bind,source="$(pwd)"/cactus.json,target=/cactus.json \
cas \
./node_modules/.bin/cactusapi \
--config-file=/cactus.json

Testing API calls with the container

Don’t have a Besu network on hand to test with? Test or develop against our Besu All-In-One container!

1. Terminal Window 1 (Ledger)

docker run --publish 8545:8545 hyperledger/cactus-besu-all-in-one:latest

2. Terminal Window 2 (Cactus API Server)

docker run \
--network host \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--env PLUGINS='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-besu

→˓", "type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.
→˓hyperledger.cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost":
→˓"http://localhost:8545", "instanceId": "some-unique-besu-connector-instance-id"}}]
→˓' \
cas

3. Terminal Window 3 (curl - replace eth accounts as needed)

10.2. @hyperledger/cactus-cmd-api-server 107

Hyperledger Cactus, Release 1.0.0-rc.3

curl --location --request POST 'http://127.0.0.1:4000/api/v1/plugins/@hyperledger/
→˓cactus-plugin-ledger-connector-besu/run-transaction' \
--header 'Content-Type: application/json' \
--data-raw '{

"web3SigningCredential": {
"ethAccount": "627306090abaB3A6e1400e9345bC60c78a8BEf57",
"secret": "c87509a1c067bbde78beb793e6fa76530b6382a4c0241e5e4a9ec0a0f44dc0d3",
"type": "PRIVATE_KEY_HEX"

},
"consistencyStrategy": {
"blockConfirmations": 0,
"receiptType": "NODE_TX_POOL_ACK"

},
"transactionConfig": {
"from": "627306090abaB3A6e1400e9345bC60c78a8BEf57",
"to": "f17f52151EbEF6C7334FAD080c5704D77216b732",
"value": 1,
"gas": 10000000

}
}'

4. The above should produce a response that looks similar to this:

{
"success": true,
"data": {

"transactionReceipt": {
"blockHash":

→˓"0x7c97c038a5d3bd84613fe23ed442695276d5d2df97f4e7c4f10ca06765033ffd",
"blockNumber": 1218,
"contractAddress": null,
"cumulativeGasUsed": 21000,
"from": "0x627306090abab3a6e1400e9345bc60c78a8bef57",
"gasUsed": 21000,
"logs": [],
"logsBloom":

→˓"0x00
→˓",

"status": true,
"to": "0xf17f52151ebef6c7334fad080c5704d77216b732",
"transactionHash":

→˓"0xc7fcb46c735bdc696d500bfc70c72595a2b8c31813929e5c61d9a5aec3376d6f",
"transactionIndex": 0

}
}

}

108 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

10.2.5 Prometheus Exporter

This class creates a prometheus exporter, which scrapes the total Cactus node count.

Usage Prometheus

The prometheus exporter object is initialized in the ApiServer class constructor itself, so instantiating the object of the
ApiServer class, gives access to the exporter object. You can also initialize the prometheus exporter object seperately
and then pass it to the IApiServerConstructorOptions interface for ApiServer constructor.

getPrometheusMetricsV1 function returns the prometheus exporter metrics, currently displaying the total plugins
imported, which currently refreshes to match the plugin count, everytime setTotalPluginImports method is called.

Prometheus Integration

To use Prometheus with this exporter make sure to install Prometheus main component. Once Prometheus is setup, the
corresponding scrape_config needs to be added to the prometheus.yml

- job_name: 'consortium_manual_exporter'
metrics_path: /api/v1/api-server/get-prometheus-exporter-metrics
scrape_interval: 5s
static_configs:
- targets: ['{host}:{port}']

Here the host:port is where the prometheus exporter metrics are exposed. The test cases (For exam-
ple, packages/cactus-plugin-consortium-manual/src/test/typescript/unit/consortium/get-node-jws-endpoint-v1.test.ts)
exposes it over 0.0.0.0 and a random port(). The random port can be found in the running logs of the test case and
looks like (42379 in the below mentioned URL) Metrics URL: http://0.0.0.0:42379/api/v1/api-server/
get-prometheus-exporter-metrics/get-prometheus-exporter-metrics

Once edited, you can start the prometheus service by referencing the above edited prometheus.yml file. On the
prometheus graphical interface (defaulted to http://localhost:9090), choose Graph from the menu bar, then select the
Console tab. From the Insert metric at cursor drop down, select cactus_api_server_total_plugin_imports and click
execute

Shutdown Hook

The API config contains a flag:

{
"enableShutdownHook": true

}

This allows for graceful shutdown of the API server after a SIGINT via cli CTRL + C. This hook can be disabled by
passing in false either via the TypeScript constructor or the JSON config file.

10.2. @hyperledger/cactus-cmd-api-server 109

https://prometheus.io/download/

Hyperledger Cactus, Release 1.0.0-rc.3

Helper code

response.type.ts

This file contains the various responses of the metrics.

data-fetcher.ts

This file contains functions encasing the logic to process the data points.

metrics.ts

This file lists all the prometheus metrics and what they are used for.

10.2.6 FAQ

What is the difference between a Cactus Node and a Cactus API Server?

The node is what has an identity within your PKI and can be made up of 1-N API server instances that all share the
same configuration/identity of the node. See deployment scenarios above for a much more detailed explanation.

Is the API server horizontally scalable?

Yes, 100%. Keep in mind though that the API server can be loaded up with arbitrary plugins meaning that if you write
a plugin that has a central database that can only do 1 transaction per second, then it will not help you much that the
API server itself is horizontally scalable because deploying a thousand instances of the API server will just result in you
having a thousand instances of your plugin all waiting for that underlying database with its 1 TPS throughput hogging
your system. When we say that the API server is horizontally scalable, we mean that the API server itself is designed
not to have any such state mentioned in the example above. You are responsible for only deploying plugins in the API
server that are horizontally scalable as well. In short, your whole system is only horizontally scalable if all components
of it are horizontally scalable.

Does the API server automatically protect me from malicious plugins?

No. If you install a third-party plugin that wasn’t vetted by anyone and that plugin happens to have malicious code in it
to steal your private keys, it can do so. You are responsible for making sure that the plugins you install have no known
security vulnerabilities or backdoors e.g. they are considered “secure”. The double quotes around “secure” is meant
to signify the fact that no software is ever really truly secure, just merely lacking of known vulnerabilities at any given
point in time.

110 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

Can I use the API server with plugins deployed as a service?

Yes. You can deploy your plugin written in any language, anywhere as long as it is accessible over the network and
does come with a Typescript API client that you can use to install into the API server as a proxy for an in-process plugin
implementation.

10.3 @hyperledger/cactus-common

TODO: description

10.3.1 Usage

// TODO: DEMONSTRATE API

10.4 @hyperledger/cactus-core

This module is responsible for providing the backbone for the rest of the packages when it comes to the features of
Cactus.

The main difference between this and the cactus-common package is that this one does not guarantee it’s features to
work in the browser.

The main difference from the cactus-core-api package is that this is meant to contain actual implementations while
cactus-core-api is meant to be strictly about defining interfaces. Based on that latter constraint we may move the
PluginRegistry out of that package and into this one in the near future.

10.4.1 Usage

// TODO: DEMONSTRATE API

10.5 @hyperledger/cactus-plugin-keychain-vault

10.5.1 Prometheus Exporter

This class creates a prometheus exporter, which scrapes the transactions (total transaction count) for the use cases
incorporating the use of Keychain vault plugin.

10.3. @hyperledger/cactus-common 111

Hyperledger Cactus, Release 1.0.0-rc.3

Usage

The prometheus exporter object is initialized in the PluginKeychainVault class constructor itself, so instantiat-
ing the object of the PluginKeychainVault class, gives access to the exporter object. You can also initialize
the prometheus exporter object seperately and then pass it to the IPluginKeychainVaultOptions interface for
PluginKeychainVault constructor.

getPrometheusMetricsV1 function returns the prometheus exporter metrics, currently displaying the total key count,
which currently increments everytime the set() and delete()method of the PluginKeychainVault class is called.

Prometheus Integration

To use Prometheus with this exporter make sure to install Prometheus main component. Once Prometheus is setup, the
corresponding scrape_config needs to be added to the prometheus.yml

- job_name: 'keychain_vault_exporter'
metrics_path: api/v1/plugins/@hyperledger/cactus-plugin-keychain-vault/get-prometheus-

→˓exporter-metrics
scrape_interval: 5s
static_configs:
- targets: ['{host}:{port}']

Here the host:port is where the prometheus exporter metrics are exposed. The test cases (For exam-
ple, packages/cactus-plugin-keychain-vault/src/test/typescript/integration/plugin-keychain-vault.test.ts) exposes it over
0.0.0.0 and a random port(). The random port can be found in the running logs of the test case and
looks like (42379 in the below mentioned URL) Metrics URL: http://0.0.0.0:42379/api/v1/plugins/
@hyperledger/cactus-plugin-keychain-plugin/get-prometheus-exporter-metrics

Once edited, you can start the prometheus service by referencing the above edited prometheus.yml file. On the
prometheus graphical interface (defaulted to http://localhost:9090), choose Graph from the menu bar, then select the
Console tab. From the Insert metric at cursor drop down, select cactus_keychain_vault_total_key_count and click
execute

Helper code

response.type.ts

This file contains the various responses of the metrics.

data-fetcher.ts

This file contains functions encasing the logic to process the data points

112 Chapter 10. Cactus Components

https://prometheus.io/download/

Hyperledger Cactus, Release 1.0.0-rc.3

metrics.ts

This file lists all the prometheus metrics and what they are used for.

10.6 @hyperledger/cactus-plugin-ledger-connector-besu

This plugin provides Cactus a way to interact with Besu networks. Using this we can perform:

• Deploy Smart-contracts through bytecode.

• Build and sign transactions using different keystores.

• Invoke smart-contract functions that we have deployed on the network.

10.6.1 Summary

• Getting Started

• Architecture

• Usage

• Prometheus Exporter

• Runing the tests

• Built With

• Contributing

• License

• Acknowledgments

10.6.2 Getting Started

Clone the git repository on your local machine. Follow these instructions that will get you a copy of the project up and
running on your local machine for development and testing purposes.

Prerequisites

In the root of the project to install the dependencies execute the command:

npm run configure

10.6. @hyperledger/cactus-plugin-ledger-connector-besu 113

Hyperledger Cactus, Release 1.0.0-rc.3

Compiling

In the project root folder, run this command to compile the plugin and create the dist directory:

npm run tsc

Architecture

The sequence diagrams for various endpoints are mentioned below

run-transaction-endpoint

The above diagram shows the
sequence diagram of run-transaction-endpoint. User A (One of the many Users) interacts with the API Client which in
turn, calls the API server. API server then executes transact() method which is explained in detailed in the subsequent

114 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

diagrams.

10.6. @hyperledger/cactus-plugin-ledger-connector-besu 115

Hyperledger Cactus, Release 1.0.0-rc.3

The above diagram shows the sequence diagraom of transact() method of the PluginLedgerConnectorBesu class. The
caller to this function, which in reference to the above sequence diagram is API server, sends RunTransactionRequest
object as an argument to the transact() method. Based on the type of Web3SigningCredentialType, corresponsing
responses are sent back to the caller.

The above diagram shows transactCactusKeychainReference() method being called by the transact() method
of the PluginLedgerConnector class when the Web3SigningCredentialType is CACTUSKEYCHAINREF.
This method inturn calls transactPrivateKey() which calls the signTransaction() method of web3 library.

116 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

The above diagram shows transactPrivateKey() method being called by the transact()
method of the PluginLedgerConnector class when the Web3SigningCredentialType is PRI-
VATEKEYHEX. This method then calls the signTransaction() method of the web3 library.

10.6. @hyperledger/cactus-plugin-ledger-connector-besu 117

Hyperledger Cactus, Release 1.0.0-rc.3

The above diagram shows transactSigned() method being called by the transact() method of
the PluginLedgerConnector class when the Web3SigningCredentialType is NONE. This method
calls the sendSignedTransaction() of the web3 library and then calls pollForTxReceipt() method.

118 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

The
above diagram shows pollForTxReceipt() method which is called by the transactSigned() method as described in the
previous sequence diagram. This method waits for the block confirmation in a loop and then sends the corresponding
response back to the caller.

Usage

To use this import public-api and create new PluginFactoryLedgerConnector. Then use it to create a connector.

const factory = new PluginFactoryLedgerConnector({
pluginImportType: PluginImportType.LOCAL,

});
const connector: PluginLedgerConnectorBesu = await factory.create({
rpcApiHttpHost,
instanceId: uuidv4(),
pluginRegistry: new PluginRegistry(),

});

You can make calls through the connector to the plugin API:

10.6. @hyperledger/cactus-plugin-ledger-connector-besu 119

Hyperledger Cactus, Release 1.0.0-rc.3

async invokeContract(req: InvokeContractV1Request):Promise<InvokeContractV1Response>;
async transactSigned(rawTransaction: string): Promise<RunTransactionResponse>;
async transactPrivateKey(req: RunTransactionRequest): Promise<RunTransactionResponse>;
async transactCactusKeychainRef(req: RunTransactionRequest):Promise
→˓<RunTransactionResponse>;
async deployContract(req: DeployContractSolidityBytecodeV1Request):Promise
→˓<RunTransactionResponse>;
async signTransaction(req: SignTransactionRequest):Promise<Optional
→˓<SignTransactionResponse>>;

Call example to deploy a contract:

const deployOut = await connector.deployContract({
web3SigningCredential: {
ethAccount: firstHighNetWorthAccount,
secret: besuKeyPair.privateKey,
type: Web3SigningCredentialType.PrivateKeyHex,

},
bytecode: SmartContractJson.bytecode,
gas: 1000000,

});

The field “type” can have the following values:

enum Web3SigningCredentialType {
CACTUSKEYCHAINREF = 'CACTUS_KEYCHAIN_REF',
GETHKEYCHAINPASSWORD = 'GETH_KEYCHAIN_PASSWORD',
PRIVATEKEYHEX = 'PRIVATE_KEY_HEX',
NONE = 'NONE'

}

Transaction Privacy Feature

Private transactions using Besu are currently enabled.

The privateFor and privateFrom fields must be populated, more information about Besu Private Transactions here.

Call example to deploy a private contract:

const deployOut = await connector1.deployContract({
bytecode: SmartContract.bytecode,
contractAbi: SmartContract.abi,
contractName: SmartContract.contractName,
constructorArgs: [],
privateTransactionConfig: {
privateFrom: SendingTesseraPublicKey,
privateFor: [
Member1TesseraPrivateKey,
Member2TesseraPrivateKey,

],
},
web3SigningCredential: {
secret:SendingBesuPrivateKey,

(continues on next page)

120 Chapter 10. Cactus Components

https://besu.hyperledger.org/en/stable/Concepts/Privacy/Private-Transactions/

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

type: Web3SigningCredentialType.PrivateKeyHex,
},
gas: 3000000

});

Extensive documentation and examples in the readthedocs (WIP)

Building/running the container image locally

In the Cactus project root say:

DOCKER_BUILDKIT=1 docker build -f ./packages/cactus-plugin-ledger-connector-besu/
→˓Dockerfile . -t cplcb

Build with a specific version of the npm package:

DOCKER_BUILDKIT=1 docker build --build-arg NPM_PKG_VERSION=0.4.1 -f ./packages/cactus-
→˓plugin-ledger-connector-besu/Dockerfile . -t cplcb

Running the container

Launch container with plugin configuration as an environment variable:

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--env PLUGINS='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-besu",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost": "http://
→˓localhost:8545", "instanceId": "some-unique-besu-connector-instance-id"}}]' \
cplcb

Launch container with plugin configuration as a CLI argument:

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
cplcb \
./node_modules/.bin/cactusapi \
--plugins='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-besu", "type

→˓": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost": "http://
→˓localhost:8545", "instanceId": "some-unique-besu-connector-instance-id"}}]'

Launch container with configuration file mounted from host machine:

10.6. @hyperledger/cactus-plugin-ledger-connector-besu 121

https://readthedocs.org/projects/hyperledger-cactus/

Hyperledger Cactus, Release 1.0.0-rc.3

echo '[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-besu", "type": "org.
→˓hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.cactus.plugin_
→˓import_action.INSTALL", "options": {"rpcApiHttpHost": "http://localhost:8545",
→˓"instanceId": "some-unique-besu-connector-instance-id"}}]' > cactus.json

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--mount type=bind,source="$(pwd)"/cactus.json,target=/cactus.json \
cplcb \

./node_modules/.bin/cactusapi \
--config-file=/cactus.json

Testing API calls with the container

Don’t have a Besu network on hand to test with? Test or develop against our Besu All-In-One container!

Terminal Window 1 (Ledger)

docker run -p 0.0.0.0:8545:8545/tcp -p 0.0.0.0:8546:8546/tcp -p 0.0.0.0:8888:8888/tcp ␣
→˓-p 0.0.0.0:9001:9001/tcp -p 0.0.0.0:9545:9545/tcp hyperledger/cactus-besu-all-in-
→˓one:latest

Terminal Window 2 (Cactus API Server)

docker run \
--network host \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--env PLUGINS='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-besu",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost": "http://
→˓localhost:8545", "instanceId": "some-unique-besu-connector-instance-id"}}]' \
cplcb

Terminal Window 3 (curl - replace eth accounts as needed)

curl --location --request POST 'http://127.0.0.1:4000/api/v1/plugins/@hyperledger/cactus-
→˓plugin-ledger-connector-besu/run-transaction' \
--header 'Content-Type: application/json' \
--data-raw '{

"web3SigningCredential": {
"ethAccount": "627306090abaB3A6e1400e9345bC60c78a8BEf57",
"secret": "c87509a1c067bbde78beb793e6fa76530b6382a4c0241e5e4a9ec0a0f44dc0d3",
"type": "PRIVATE_KEY_HEX"

},
"consistencyStrategy": {
"blockConfirmations": 0,
"receiptType": "NODE_TX_POOL_ACK"

},
(continues on next page)

122 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

"transactionConfig": {
"from": "627306090abaB3A6e1400e9345bC60c78a8BEf57",
"to": "f17f52151EbEF6C7334FAD080c5704D77216b732",
"value": 1,
"gas": 10000000

}
}'

The above should produce a response that looks similar to this:

{
"success": true,
"data": {

"transactionReceipt": {
"blockHash":

→˓"0x7c97c038a5d3bd84613fe23ed442695276d5d2df97f4e7c4f10ca06765033ffd",
"blockNumber": 1218,
"contractAddress": null,
"cumulativeGasUsed": 21000,
"from": "0x627306090abab3a6e1400e9345bc60c78a8bef57",
"gasUsed": 21000,
"logs": [],
"logsBloom":

→˓"0x00
→˓",

"status": true,
"to": "0xf17f52151ebef6c7334fad080c5704d77216b732",
"transactionHash":

→˓"0xc7fcb46c735bdc696d500bfc70c72595a2b8c31813929e5c61d9a5aec3376d6f",
"transactionIndex": 0

}
}

}

10.6.3 Prometheus Exporter

This class creates a prometheus exporter, which scrapes the transactions (total transaction count) for the use cases
incorporating the use of Besu connector plugin.

Prometheus Exporter Usage

The prometheus exporter object is initialized in the PluginLedgerConnectorBesu class constructor itself, so in-
stantiating the object of the PluginLedgerConnectorBesu class, gives access to the exporter object. You can also
initialize the prometheus exporter object seperately and then pass it to the IPluginLedgerConnectorBesuOptions
interface for PluginLedgerConnectoBesu constructor.

getPrometheusMetricsV1 function returns the prometheus exporter metrics, currently displaying the total trans-
action count, which currently increments everytime the transact() method of the PluginLedgerConnectorBesu
class is called.

10.6. @hyperledger/cactus-plugin-ledger-connector-besu 123

Hyperledger Cactus, Release 1.0.0-rc.3

Prometheus Integration

To use Prometheus with this exporter make sure to install Prometheus main component. Once Prometheus is setup, the
corresponding scrape_config needs to be added to the prometheus.yml

- job_name: 'besu_ledger_connector_exporter'
metrics_path: api/v1/plugins/@hyperledger/cactus-plugin-ledger-connector-besu/get-

→˓prometheus-exporter-metrics
scrape_interval: 5s
static_configs:
- targets: ['{host}:{port}']

Here the host:port is where the prometheus exporter metrics are exposed. The test cases (For example,
packages/cactus-plugin-ledger-connector-besu/src/test/typescript/integration/plugin-ledger-connector-besu/deploy-
contract/deploy-contract-from-json.test.ts) exposes it over 0.0.0.0 and a random port(). The random port can be
found in the running logs of the test case and looks like (42379 in the below mentioned URL) Metrics URL:
http://0.0.0.0:42379/api/v1/plugins/@hyperledger/cactus-plugin-ledger-connector-besu/
get-prometheus-exporter-metrics

Once edited, you can start the prometheus service by referencing the above edited prometheus.yml file. On the
prometheus graphical interface (defaulted to http://localhost:9090), choose Graph from the menu bar, then select the
Console tab. From the Insert metric at cursor drop down, select cactus_besu_total_tx_count and click execute

Helper code

response.type.ts

This file contains the various responses of the metrics.

data-fetcher.ts

This file contains functions encasing the logic to process the data points

metrics.ts

This file lists all the prometheus metrics and what they are used for.

10.6.4 Running the tests

To check that all has been installed correctly and that the pugin has no errors run the tests:

• Run this command at the project’s root:

npm run test:plugin-ledger-connector-besu

124 Chapter 10. Cactus Components

https://prometheus.io/download/

Hyperledger Cactus, Release 1.0.0-rc.3

10.6.5 Contributing

We welcome contributions to Hyperledger Cactus in many forms, and there’s always plenty to do!

Please review CONTIRBUTING.md to get started.

10.6.6 License

This distribution is published under the Apache License Version 2.0 found in the LICENSE file.

10.6.7 Acknowledgments

10.7 @hyperledger/cactus-plugin-ledger-connector-corda

10.7.1 Table of Contents

• Summary

• Concepts

– Contract Invocation JSON DSL

– Expressing Primitive vs Reference Types with the DLS

– Flow Invocation Types

• Usage

– Invoke Contract (flow) with no parameters

– Invoke Contract (flow) with a single integer parameter

– Invoke Contract (flow) with a custom class parameter

– Custom Configuration via Env Variables

• Building Docker Image Locally

• Example NodeDiagnosticInfo JSON Response

• Monitoring

– Usage Prometheus

– Prometheus Integration

– Helper code - response.type.ts - data-fetcher.ts - metrics.ts

10.7.2 Summary

The Corda connector is written in Kotlin and ships as a Spring Boot JVM application that accepts API requests and
translates those into Corda RPC calls.

Deploying the Corda connector therefore involves also deploying the mentioned JVM application in addition to de-
ploying the Cactus API server with the desired plugins configured.

10.7. @hyperledger/cactus-plugin-ledger-connector-corda 125

Hyperledger Cactus, Release 1.0.0-rc.3

10.7.3 Concepts

Contract Invocation JSON DSL

One of our core design principles for Hyperledger Cactus is to have low impact deployments meaning that changes to
the ledgers themselves should be kept to a minimum or preferably have no need for any at all. With this in mind, we
had to solve the challenge of providing users with the ability to invoke Corda flows as dynamically as possible within
the confines of the strongly typed JVM contrasted with the weakly typed Javascript language runtime of NodeJS.

Corda might release some convenience features to ease this in the future, but in the meantime we have the Contract
Invocation JSON DSL which allows developers to specify truly arbitrary JVM types as part of their contract invocation
arguments even if otherwise these types would not be possible to serialize or deserialize with traditional tooling such
as the excellent Jackson JSON Java library or similar ones.

Expressing Primitive vs Reference Types with the DLS

The features of the DSL include expressing whether a contract invocation parameter is a reference or a primitive JVM
data types. This is a language feature that Javascript has as well to some extent, but for those in need of a refresher,
here’s a writeup from a well known Q/A website that I found on the internet: What’s the difference between primitive
and reference types?

To keep it simple, the following types are primitive data types in the Java Virtual Machine (JVM) and everything else
not included in the list below can be safely considered a reference type:

• boolean

• byte

• short

• char

• int

• long

• float

• double

If you’d like to further clarify how this works and feel like an exciting adventure then we recommend that you dive into
the source code of the deserializer implementation of the JSON DSL and take a look at the following points of interest
in the code located there:

• val exoticTypes: Map<String, Class<*>>

• fun instantiate(jvmObject: JvmObject)

Flow Invocation Types

Can be dynamic or tracked dynamic and the corresponding enum values are defined as:

/**
* Determines which flow starting method will be used on the back-end when invoking the␣
→˓flow. Based on the value here the plugin back-end might invoke the rpc.
→˓startFlowDynamic() method or the rpc.startTrackedFlowDynamic() method. Streamed␣
→˓responses are aggregated and returned in a single response to HTTP callers who are not␣
→˓equipped to handle streams like WebSocket/gRPC/etc. do.

(continues on next page)

126 Chapter 10. Cactus Components

https://github.com/FasterXML/jackson
https://stackoverflow.com/a/32049775/698470
https://stackoverflow.com/a/32049775/698470
https://github.com/hyperledger/cactus/blob/main/packages/cactus-plugin-ledger-connector-corda/src/main-server/kotlin/gen/kotlin-spring/src/main/kotlin/org/hyperledger/cactus/plugin/ledger/connector/corda/server/impl/JsonJvmObjectDeserializer.kt

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

* @export
* @enum {string}
*/
export enum FlowInvocationType {

TRACKEDFLOWDYNAMIC = 'TRACKED_FLOW_DYNAMIC',
FLOWDYNAMIC = 'FLOW_DYNAMIC'

}

Official Corda Java Docs - startFlowDynamic()

Official Corda Java Docs - startTrackedFlowDynamic()

10.7.4 Usage

Take a look at how the API client can be used to run transactions on a Corda ledger:
packages/cactus-plugin-ledger-connector-corda/src/test/typescript/integration/
jvm-kotlin-spring-server.test.ts

Invoke Contract (flow) with no parameters

Below, we’ll demonstrate invoking a simple contract with no parameters.

The contract source:

package com.example.organization.samples.application.flows;

class SomeCoolFlow {
// constructor with no arguments
public SomeCoolFlow() {
this.doSomething();

}

public doSomething(): void {
throw new RuntimeException("Method not implemented.");

}
}

Steps to build your request:

1. Find out the fully qualified class name of your contract (flow) and set this as the value for the request parameter
flowFullClassName

2. Decide on your flow invocation type which largely comes down to answering the question of: Does your
invocation follow a request/response pattern or more like a channel subscription where multiple updates at
different times are streamed to the client in response to the invocation request? In our example we as-
sume the simpler request/response communication pattern and therefore will set the flowInvocationType to
FlowInvocationType.FLOWDYNAMIC

3. Invoke the flow via the API client with the params argument being specified as an empty array []

import { DefaultApi as CordaApi } from "@hyperledger/cactus-plugin-ledger-connector-
→˓corda";
import { FlowInvocationType } from "@hyperledger/cactus-plugin-ledger-connector-
→˓corda";

(continues on next page)

10.7. @hyperledger/cactus-plugin-ledger-connector-corda 127

https://api.corda.net/api/corda-os/4.7/html/api/kotlin/corda/net.corda.core.messaging/-corda-r-p-c-ops/start-flow-dynamic.html
https://api.corda.net/api/corda-os/4.7/html/api/kotlin/corda/net.corda.core.messaging/-corda-r-p-c-ops/start-tracked-flow-dynamic.html

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

const apiUrl = "your-cactus-host.example.com"; // don't forget to specify the port␣
→˓if applicable
const apiClient = new CordaApi({ basePath: apiUrl });

const res = await apiClient.invokeContractV1({
flowFullClassName: "com.example.organization.samples.application.flows.

→˓SomeCoolFlow",
flowInvocationType: FlowInvocationType.FLOWDYNAMIC,
params: [],
timeoutMs: 60000,

});

Invoke Contract (flow) with a single integer parameter

Below, we’ll demonstrate invoking a simple contract with a single numeric parameter.

The contract source:

package com.example.organization.samples.application.flows;

class SomeCoolFlow {
// constructor with a primitive type long argument
public SomeCoolFlow(long myParameterThatIsLong) {
// do something with the parameter here

}
}

Steps to build your request:

1. Find out the fully qualified class name of your contract (flow) and set this as the value for the request parameter
flowFullClassName

2. Decide on your flow invocation type. More details at Invoke Contract (flow) with no parameters

3. Find out what is the fully qualified class name of the parameter you wish to pass in. You can do this be inspecting
the sources of the contract itself. If you do not have access to those sources, then the documentation of the contract
should have answers or the person who authored said contract. In our case here the fully qualified class name
for the number parameter is simply long because it is a primitive data type and as such these can be referred to
in their short form, but the fully qualified version also works such as: java.lang.Long. When in doubt about
these, you can always consult the official java.lang.Long Java Docs After having determined the above, you can
construct your first JvmObject JSON object as follows in order to pass in the number 42 as the first and only
parameter for our flow invocation:

params: [
{
jvmTypeKind: JvmTypeKind.PRIMITIVE,
jvmType: {

fqClassName: "long",
},
primitiveValue: 42,

}
]

128 Chapter 10. Cactus Components

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Long.html

Hyperledger Cactus, Release 1.0.0-rc.3

4. Invoke the flow via the API client with the params populated as explained above:

import { DefaultApi as CordaApi } from "@hyperledger/cactus-plugin-ledger-connector-
→˓corda";
import { FlowInvocationType } from "@hyperledger/cactus-plugin-ledger-connector-
→˓corda";

// don't forget to specify the port if applicable
const apiUrl = "your-cactus-host.example.com";
const apiClient = new CordaApi({ basePath: apiUrl });

const res = await apiClient.invokeContractV1({
flowFullClassName: "com.example.organization.samples.application.flows.

→˓SomeCoolFlow",
flowInvocationType: FlowInvocationType.FLOWDYNAMIC,
params: [
{
jvmTypeKind: JvmTypeKind.PRIMITIVE,
jvmType: {
fqClassName: "long",

},
primitiveValue: 42,

}
],
timeoutMs: 60000,

});

Invoke Contract (flow) with a custom class parameter

Below, we’ll demonstrate invoking a contract with a single class instance parameter.

The contract sources:

package com.example.organization.samples.application.flows;

// contract with a class instance parameter
class BuildSpaceshipFlow {
public BuildSpaceshipFlow(SpaceshipInfo buildSpecs) {
// build spaceship as per the specs

}
}

package com.example.organization.samples.application.flows;

// The type that the contract accepts as an input parameter
class SpaceshipInfo {
public SpaceshipInfo(String name, Integer seatsForHumans) {
}

}

Assembling and Sending your request:

Invoke the flow via the API client with the params populated as shown below.

10.7. @hyperledger/cactus-plugin-ledger-connector-corda 129

Hyperledger Cactus, Release 1.0.0-rc.3

Key thing notice here is that we now have a class instance as a parameter for our contract (flow) invocation so we
have to describe how this class instance itself will be instantiated by providing a nested array of parameters via the
jvmCtorArgs which stands for Java Virtual Machine Constructor Arguments meaning that elements of this array will
be passed in dynamically (via Reflection) to the class constructor.

Java Equivalent

cordaRpcClient.startFlowDynamic(
BuildSpaceshipFlow.class,
new SpaceshipInfo(
"The last spaceship you'll ever need.",
10000000

)
);

Cactus Invocation JSON DLS Equivalent to the Above Java Snippet

import { DefaultApi as CordaApi } from "@hyperledger/cactus-plugin-ledger-connector-corda
→˓";
import { FlowInvocationType } from "@hyperledger/cactus-plugin-ledger-connector-corda";

// don't forget to specify the port if applicable
const apiUrl = "your-cactus-host.example.com";
const apiClient = new CordaApi({ basePath: apiUrl });

const res = await apiClient.invokeContractV1({
flowFullClassName: "com.example.organization.samples.application.flows.

→˓BuildSpaceshipFlow",
flowInvocationType: FlowInvocationType.FLOWDYNAMIC,
params: [
{
jvmTypeKind: JvmTypeKind.REFERENCE,

jvmType: {
fqClassName: "com.example.organization.samples.application.flows.SpaceshipInfo",

},

jvmCtorArgs: [
{
jvmTypeKind: JvmTypeKind.PRIMITIVE,
jvmType: {
fqClassName: "java.lang.String",

},
primitiveValue: "The last spaceship you'll ever need.",

},
{
jvmTypeKind: JvmTypeKind.PRIMITIVE,
jvmType: {
fqClassName: "java.lang.Long",

},
primitiveValue: 10000000000,

},
],

}
],

(continues on next page)

130 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

timeoutMs: 60000,
});

Custom Configuration via Env Variables

{
"cactus": {
"corda": {
"node": {
"host": "localhost"

},
"rpc": {
"port": 10006,
"username": "user1",
"password": "test"

}
}

}
}

SPRING_APPLICATION_JSON='{"cactus":{"corda":{"node": {"host": "localhost"}, "rpc":{"port
→˓": 10006, "username":"user1", "password": "test"}}}}' gradle test

{
"flowFullClassName" : "net.corda.samples.example.flows.ExampleFlow${"$"}Initiator",
"flowInvocationType" : "FLOW_DYNAMIC",
"params" : [{
"jvmTypeKind" : "PRIMITIVE",
"jvmType" : {
"fqClassName" : "java.lang.Integer"

},
"primitiveValue" : 42,
"jvmCtorArgs" : null

}, {
"jvmTypeKind" : "REFERENCE",
"jvmType" : {
"fqClassName" : "net.corda.core.identity.Party"

},
"primitiveValue" : null,
"jvmCtorArgs" : [{
"jvmTypeKind" : "REFERENCE",
"jvmType" : {
"fqClassName" : "net.corda.core.identity.CordaX500Name"

},
"primitiveValue" : null,
"jvmCtorArgs" : [{
"jvmTypeKind" : "PRIMITIVE",
"jvmType" : {
"fqClassName" : "java.lang.String"

},
(continues on next page)

10.7. @hyperledger/cactus-plugin-ledger-connector-corda 131

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

"primitiveValue" : "PartyB",
"jvmCtorArgs" : null

}, {
"jvmTypeKind" : "PRIMITIVE",
"jvmType" : {
"fqClassName" : "java.lang.String"

},
"primitiveValue" : "New York",
"jvmCtorArgs" : null

}, {
"jvmTypeKind" : "PRIMITIVE",
"jvmType" : {
"fqClassName" : "java.lang.String"

},
"primitiveValue" : "US",
"jvmCtorArgs" : null

}]
}, {
"jvmTypeKind" : "REFERENCE",
"jvmType" : {
"fqClassName" : "org.hyperledger.cactus.plugin.ledger.connector.corda.server.

→˓impl.PublicKeyImpl"
},
"primitiveValue" : null,
"jvmCtorArgs" : [{
"jvmTypeKind" : "PRIMITIVE",
"jvmType" : {
"fqClassName" : "java.lang.String"

},
"primitiveValue" : "EdDSA",
"jvmCtorArgs" : null

}, {
"jvmTypeKind" : "PRIMITIVE",
"jvmType" : {
"fqClassName" : "java.lang.String"

},
"primitiveValue" : "X.509",
"jvmCtorArgs" : null

}, {
"jvmTypeKind" : "PRIMITIVE",
"jvmType" : {
"fqClassName" : "java.lang.String"

},
"primitiveValue" : "MCowBQYDK2VwAyEAoOv19eiCDJ7HzR9UrfwbFig7qcD1jkewKkkS4WF9kPA=

→˓",
"jvmCtorArgs" : null

}]
}]

}],
"timeoutMs" : null

}

132 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

I 16:51:01 1 Client.main - nodeDiagnosticInfo=
{
"version" : "4.6",
"revision" : "85e387ea730d9be7d6dc2b23caba1ee18305af74",
"platformVersion" : 8,
"vendor" : "Corda Open Source",
"cordapps" : [{
"type" : "Workflow CorDapp",
"name" : "workflows-1.0",
"shortName" : "Example-Cordapp Flows",
"minimumPlatformVersion" : 8,
"targetPlatformVersion" : 8,
"version" : "1",
"vendor" : "Corda Open Source",
"licence" : "Apache License, Version 2.0",
"jarHash" : {
"offset" : 0,
"size" : 32,
"bytes" : "V7ssTw0etgg3nSGk1amArB+fBH8fQUyBwIFs0DhID+0="

}
}, {
"type" : "Contract CorDapp",
"name" : "contracts-1.0",
"shortName" : "Example-Cordapp Contracts",
"minimumPlatformVersion" : 8,
"targetPlatformVersion" : 8,
"version" : "1",
"vendor" : "Corda Open Source",
"licence" : "Apache License, Version 2.0",
"jarHash" : {
"offset" : 0,
"size" : 32,
"bytes" : "Xe0eoh4+T6fsq4u0QKqkVsVDMYSWhuspHqE0wlOlyqU="

}
}]

}

10.7.5 Building Docker Image Locally

The cccs tag used in the below example commands is a shorthand for the full name of the container image otherwise
referred to as cactus-corda-connector-server.

From the project root:

DOCKER_BUILDKIT=1 docker build ./packages/cactus-plugin-ledger-connector-corda/src/main-
→˓server/ -t cccs

10.7. @hyperledger/cactus-plugin-ledger-connector-corda 133

Hyperledger Cactus, Release 1.0.0-rc.3

10.7.6 Example NodeDiagnosticInfo JSON Response

{
"version": "4.6",
"revision": "85e387ea730d9be7d6dc2b23caba1ee18305af74",
"platformVersion": 8,
"vendor": "Corda Open Source",
"cordapps": [
{
"type": "Workflow CorDapp",
"name": "workflows-1.0",
"shortName": "Obligation Flows",
"minimumPlatformVersion": 8,
"targetPlatformVersion": 8,
"version": "1",
"vendor": "Corda Open Source",
"licence": "Apache License, Version 2.0",
"jarHash": {
"bytes": "Vf9MllnrC7vrWxrlDE94OzPMZW7At1HhTETL/XjiAmc=",
"offset": 0,
"size": 32

}
},
{
"type": "CorDapp",
"name": "corda-confidential-identities-4.6",
"shortName": "corda-confidential-identities-4.6",
"minimumPlatformVersion": 1,
"targetPlatformVersion": 1,
"version": "Unknown",
"vendor": "Unknown",
"licence": "Unknown",
"jarHash": {
"bytes": "nqBwqHJMbLW80hmRbKEYk0eAknFiX8N40LKuGsD0bPo=",
"offset": 0,
"size": 32

}
},
{
"type": "Contract CorDapp",
"name": "corda-finance-contracts-4.6",
"shortName": "Corda Finance Demo",
"minimumPlatformVersion": 1,
"targetPlatformVersion": 8,
"version": "1",
"vendor": "R3",
"licence": "Open Source (Apache 2)",
"jarHash": {
"bytes": "a43Q/GJG6JKTZzq3U80P8L1DWWcB/D+Pl5uitEtAeQQ=",
"offset": 0,
"size": 32

}
},

(continues on next page)

134 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

{
"type": "Workflow CorDapp",
"name": "corda-finance-workflows-4.6",
"shortName": "Corda Finance Demo",
"minimumPlatformVersion": 1,
"targetPlatformVersion": 8,
"version": "1",
"vendor": "R3",
"licence": "Open Source (Apache 2)",
"jarHash": {
"bytes": "wXdD4Iy50RaWzPp7n9s1xwf4K4MB8eA1nmhPquTMvxg=",
"offset": 0,
"size": 32

}
},
{
"type": "Contract CorDapp",
"name": "contracts-1.0",
"shortName": "Obligation Contracts",
"minimumPlatformVersion": 8,
"targetPlatformVersion": 8,
"version": "1",
"vendor": "Corda Open Source",
"licence": "Apache License, Version 2.0",
"jarHash": {
"bytes": "grTZzN71Cpxw6rZe/U5SB6/ehl99B6VQ1+ZJEx1rixs=",
"offset": 0,
"size": 32

}
}

]
}

10.7.7 Monitoring

Usage Prometheus

The prometheus exporter object is initialized in the PluginLedgerConnectorCorda class constructor itself, so in-
stantiating the object of the PluginLedgerConnectorCorda class, gives access to the exporter object. You can also
initialize the prometheus exporter object seperately and then pass it to the IPluginLedgerConnectorCordaOptions
interface for PluginLedgerConnectoCorda constructor.

getPrometheusExporterMetricsEndpointV1 function returns the prometheus exporter metrics, currently dis-
playing the total transaction count, which currently increments everytime the transact() method of the
PluginLedgerConnectorCorda class is called.

10.7. @hyperledger/cactus-plugin-ledger-connector-corda 135

Hyperledger Cactus, Release 1.0.0-rc.3

Prometheus Integration

To use Prometheus with this exporter make sure to install Prometheus main component. Once Prometheus is setup, the
corresponding scrape_config needs to be added to the prometheus.yml

- job_name: 'corda_ledger_connector_exporter'
metrics_path: api/v1/plugins/@hyperledger/cactus-plugin-ledger-connector-corda/get-

→˓prometheus-exporter-metrics
scrape_interval: 5s
static_configs:
- targets: ['{host}:{port}']

Here the host:port is where the prometheus exporter metrics are exposed. The test cases (For example,
packages/cactus-plugin-ledger-connector-corda/src/test/typescript/integration/deploy-cordapp-jars-to-nodes.test.ts)
exposes it over 0.0.0.0 and a random port(). The random port can be found in the running logs of the test case
and looks like (42379 in the below mentioned URL) Metrics URL: http://0.0.0.0:42379/api/v1/plugins/
@hyperledger/cactus-plugin-ledger-connector-corda/get-prometheus-exporter-metrics

Once edited, you can start the prometheus service by referencing the above edited prometheus.yml file. On the
prometheus graphical interface (defaulted to http://localhost:9090), choose Graph from the menu bar, then select the
Console tab. From the Insert metric at cursor drop down, select cactus_corda_total_tx_count and click execute

Helper code

response.type.ts

This file contains the various responses of the metrics.

data-fetcher.ts

This file contains functions encasing the logic to process the data points

metrics.ts

This file lists all the prometheus metrics and what they are used for.

10.8 @hyperledger/cactus-plugin-ledger-connector-fabric

10.8.1 Table of Contents

• 1. Usage

– 1.1. Installation

– 1.2. Using as a Library

– 1.3. Using Via The API Client

– 1.4. Signing Credentials with Hashicorp Vault

∗ 1.4.1. Identity Providers

∗ 1.4.2. Setting up a WS-X.509 provider

136 Chapter 10. Cactus Components

https://prometheus.io/download/

Hyperledger Cactus, Release 1.0.0-rc.3

∗ 1.4.3. Building the ws-identity docker image

• 2. Architecture

– 2.1. run-transaction-endpoint

• 3. Containerization

– 3.1. Building/running the container image locally

– 3.2. Running the container

– 3.3. Testing API calls with the container

• 4. Prometheus Exporter

– 4.1. Usage Prometheus

– 4.2. Prometheus Integration

– 4.3. Helper code

∗ 4.3.1. response.type.ts

∗ 4.3.2. data-fetcher.ts

∗ 4.3.3. metrics.ts

• 5. Contributing

• 6. License

• 7. Acknowledgments

10.8.2 1. Usage

This plugin provides a way to interact with Fabric networks. Using this one can perform:

• Deploy smart contracts (chaincode).

• Execute transactions on the ledger.

• Invoke chaincode functions.

The above functionality can either be accessed by importing the plugin directly as a library (embedding) or by hosting
it as a REST API through the Cactus API server

We also publish the Cactus API server as a container image to the GitHub Container Registry that you can run easily
with a one liner. The API server is also embeddable in your own NodeJS project if you choose to do so.

1.1. Installation

npm

npm install @hyperledger/cactus-plugin-ledger-connector-fabric

yarn

yarn add @hyperledger/cactus-plugin-ledger-connector-fabric

10.8. @hyperledger/cactus-plugin-ledger-connector-fabric 137

https://www.npmjs.com/package/@hyperledger/cactus-cmd-api-server
https://github.com/hyperledger/cactus/pkgs/container/cactus-cmd-api-server

Hyperledger Cactus, Release 1.0.0-rc.3

1.2. Using as a Library

import {
PluginLedgerConnectorFabric,
DefaultEventHandlerStrategy,

} from "@hyperledger/cactus-plugin-ledger-connector-fabric";

const plugin = new PluginLedgerConnectorFabric({
// See test cases for exact details on what parameters are needed

});

const req: RunTransactionRequest = {
// See tests for specific examples on request properties

};

try {
const res = await plugin.transact(req);

} catch (ex: Error) {
// Make sure to handle errors gracefully (which is dependent on your use-case)
console.error(ex);
throw ex;

}

1.3. Using Via The API Client

Prerequisites

• A running Fabric ledger (network)

• You have a running Cactus API server on $HOST:$PORT with the Fabric connector plugin installed on it (and the
latter configured to have access to the Fabric ledger from point 1)

import {
PluginLedgerConnectorFabric,
DefaultApi as FabricApi,
DefaultEventHandlerStrategy,

} from "@hyperledger/cactus-plugin-ledger-connector-fabric";

// Step zero is to deploy your Fabric ledger and the Cactus API server
const apiUrl = `https://${HOST}:${PORT}`;

const config = new Configuration({ basePath: apiUrl });

const apiClient = new FabricApi(config);

const req: RunTransactionRequest = {
// See tests for specific examples on request properties

};

try {
const res = await apiClient.runTransactionV1(req);

} catch (ex: Error) {
// Make sure to handle errors gracefully (which is dependent on your use-case)

(continues on next page)

138 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

console.error(ex);
throw ex;

}

1.4. Signing Credentials with Hashicorp Vault

To support signing of message with multiple identity types

// vault server config for supporting vault identity provider
const vaultConfig:IVaultConfig = {

endpoint : "http://localhost:8200",
transitEngineMountPath: "/transit",

}
// web-socket server config for supporting vault identity provider
const webSocketConfig:IVaultConfig = {
server: socketServer as FabricSocketServer

}
// provide list of identity signing to be supported
const supportedIdentity:FabricSigningCredentialType[] = [FabricSigningCredentialType.
→˓VaultX509,FabricSigningCredentialType.WsX509,FabricSigningCredentialType.X509]
const pluginOptions:IPluginLedgerConnectorFabricOptions = {
// other options
vaultConfig : vaultConfig,
webSocketConfig : webSocketConfig,
supportedIdentity:supportedIdentity
// .. other options

}
const connector: PluginLedgerConnectorFabric = new␣
→˓PluginLedgerConnectorFabric(pluginOptions);

To enroll an identity

await connector.enroll(
{
keychainId: "keychain-identifier-for storing-certData",
keychainRef: "cert-data-identifier",

// require in case of vault
type: FabricSigningCredentialType.VaultX509, // FabricSigningCredentialType.

→˓X509
vaultTransitKey: {
token: "vault-token",
keyName: "vault-key-label",

},
// required in case of web-socket server
type: FabricSigningCredentialType.WsX509,
webSocketKey: {
signature: signature,
sessionId: sessionId,

},
},

(continues on next page)

10.8. @hyperledger/cactus-plugin-ledger-connector-fabric 139

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

{
enrollmentID: "client2",
enrollmentSecret: "pw",
mspId: "Org1MSP",
caId: "ca.org1.example.com",

},
);

To Register an identity using register’s key

const secret = await connector.register(
{
keychainId: "keychain-id-that-store-certData-of-registrar",
keychainRef: "certData-label",

// require in case of vault
type: FabricSigningCredentialType.VaultX509, // FabricSigningCredentialType.

→˓X509
vaultTransitKey: {
token: testToken,
keyName: registrarKey,

},
// required in case of web-socket server
type: FabricSigningCredentialType.WsX509,
webSocketKey: {
signature: signature,
sessionId: sessionId,

},
},
{
enrollmentID: "client-enrollmentID",
enrollmentSecret: "pw",
affiliation: "org1.department1",

},
"ca.org1.example.com", // caID

);

To transact with fabric

const resp = await connector.transact{
signingCredential: {

keychainId: keychainId,
keychainRef: "client-certData-id",

// require in case of vault
type: FabricSigningCredentialType.VaultX509, // FabricSigningCredentialType.

→˓X509
vaultTransitKey: {
token: testToken,
keyName: registrarKey,

},
// required in case of web-socket server

(continues on next page)

140 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

type: FabricSigningCredentialType.WsX509,
webSocketKey: {
signature: signature,
sessionId: sessionId,

},
},
// .. other options

}

To Rotate the key

await connector.rotateKey(
{

keychainId: keychainId,
keychainRef: "client-certData-id",
type: FabricSigningCredentialType.VaultX509, // FabricSigningCredentialType.X509

// require in case of vault
vaultTransitKey: {
token: testToken,
keyName: registrarKey,

},
// key rotation currently not available using web-socket server
// web-socket connection not used to manages external keys
// user should re-enroll with new pub/priv key pair

},
{

enrollmentID: string;
enrollmentSecret: string;
caId: string;

}
)

Extensive documentation and examples in the readthedocs (WIP)

1.4.1. Identity Providers

Identity providers allows client to manage their private more effectively and securely. Cactus Fabric Connector support
multiple type of providers. Each provider differ based upon where the private are stored. On High level certificate
credential are stored as

{
type: FabricSigningCredentialType;
credentials: {
certificate: string;
// if identity type is IdentityProvidersType.X509
privateKey?: string;

};
mspId: string;

}

Currently Cactus Fabric Connector supports following Identity Providers

10.8. @hyperledger/cactus-plugin-ledger-connector-fabric 141

https://readthedocs.org/projects/hyperledger-cactus/

Hyperledger Cactus, Release 1.0.0-rc.3

• X509 : Simple and unsecured provider wherein private key is stored along with certificate in some datastore.
Whenever connector require signature on fabric message, private key is brought from the datastore and mes-
sage signed at the connector.

• Vault-X.509 : Secure provider wherein private key is stored with vault’s transit transit engine and certificate
in certDatastore. Rather then bringing the key to the connector, message digest are sent to the vault server
which returns the signature.

• WS-X.509 : Secure provider wherein private key is stored with client and certificate in certDatastore.
To get the fabric messages signed, message digest is sent to the client via webSocket connection opened by the
client in the beginning (as described above)

1.4.2. Setting up a WS-X.509 provider

The following packages are used to access private keys (via web-socket) stored on a clients external device (e.g., browser,
mobile app, or an IoT device. . .). -ws-identity: web-socket server that issues new ws-session tickets, authenticates
incoming connections, and sends signature requests -ws-identity-client: backend connector to send requests from fabric
application to ws-identity -ws-wallet: external clients crypto key tool: create new key pair, request session ticket and
open web-socket connection with ws-identity

1.4.3. Building the ws-identity docker image

TBD

10.8.3 2. Architecture

The sequence diagrams for various endpoints are mentioned below

142 Chapter 10. Cactus Components

https://github.com/brioux/ws-identity
https://github.com/brioux/ws-identity-client
https://github.com/brioux/ws-wallet

Hyperledger Cactus, Release 1.0.0-rc.3

2.1. run-transaction-endpoint

The above diagram shows the sequence diagram of run-transaction-endpoint. User A (One of the many Users) interacts
with the API Client which in turn, calls the API server. API server then executes transact() method which is explained
in detailed in the subsequent diagram.

10.8. @hyperledger/cactus-plugin-ledger-connector-fabric 143

Hyperledger Cactus, Release 1.0.0-rc.3

144 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

The above diagram shows the sequence diagraom of transact() method of the PluginLedgerConnectorFabric class. The
caller to this function, which in reference to the above sequence diagram is API server, sends RunTransactionRequest
object as an argument to the transact() method. Based on the invocationType (FabricContractInvocationType.CALL,
FabricCOntractInvocationType.SEND), corresponding responses are send back to the caller.

10.8. @hyperledger/cactus-plugin-ledger-connector-fabric 145

Hyperledger Cactus, Release 1.0.0-rc.3

146 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

The above diagram shows the sequence diagraom of enroll() method of the PluginLedgerConnectorFabric class. The
caller to this function, which in reference to the above sequence diagram is API server, sends Signer object along
with EnrollmentRequest as an argument to the enroll() method. Based on the singerType (FabricSigningCredential-
Type.X509, FabricSigningCredentialType.VaultX509, FabricSigningCredentialType.WsX509), corresponding iden-
tity is enrolled and stored inside keychain.

10.8.4 3. Containerization

3.1. Building/running the container image locally

In the Cactus project root say:

DOCKER_BUILDKIT=1 docker build -f ./packages/cactus-plugin-ledger-connector-fabric/
→˓Dockerfile . -t cplcb

Build with a specific version of the npm package:

DOCKER_BUILDKIT=1 docker build --build-arg NPM_PKG_VERSION=0.4.1 -f ./packages/cactus-
→˓plugin-ledger-connector-fabric/Dockerfile . -t cplcb

3.2. Running the container

Launch container with plugin configuration as an environment variable:

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--env PLUGINS='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-fabric",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"instanceId": "some-unique-fabric-
→˓connector-instance-id", "dockerBinary": "usr/local/bin/docker","cliContainerEnv": {

"CORE_PEER_LOCALMSPID": "Org1MSP",
"CORE_PEER_ADDRESS": "peer0.org1.example.com:7051",
"CORE_PEER_MSPCONFIGPATH":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.

→˓example.com/users/Admin@org1.example.com/msp",
"CORE_PEER_TLS_ROOTCERT_FILE":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.

→˓example.com/peers/peer0.org1.example.com/tls/ca.crt",
"ORDERER_TLS_ROOTCERT_FILE":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/

→˓example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
},
"discoveryOptions": {
"enabled": true,
"asLocalhost: true"

}
}}}]' \
cplcb

Launch container with plugin configuration as a CLI argument:

10.8. @hyperledger/cactus-plugin-ledger-connector-fabric 147

Hyperledger Cactus, Release 1.0.0-rc.3

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
cplcb \
./node_modules/.bin/cactusapi \
--plugins='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-fabric",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"instanceId": "some-unique-fabric-
→˓connector-instance-id", "dockerBinary": "usr/local/bin/docker","cliContainerEnv": {

"CORE_PEER_LOCALMSPID": "Org1MSP",
"CORE_PEER_ADDRESS": "peer0.org1.example.com:7051",
"CORE_PEER_MSPCONFIGPATH":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.

→˓example.com/users/Admin@org1.example.com/msp",
"CORE_PEER_TLS_ROOTCERT_FILE":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.

→˓example.com/peers/peer0.org1.example.com/tls/ca.crt",
"ORDERER_TLS_ROOTCERT_FILE":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/

→˓example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
},
"discoveryOptions": {
"enabled": true,
"asLocalhost: true"

}
}}}]'

Launch container with configuration file mounted from host machine:

echo '[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-fabric", "type":
→˓"org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.cactus.
→˓plugin_import_action.INSTALL", "options": {"instanceId": "some-unique-fabric-
→˓connector-instance-id", "dockerBinary": "usr/local/bin/docker","cliContainerEnv": {

"CORE_PEER_LOCALMSPID": "Org1MSP",
"CORE_PEER_ADDRESS": "peer0.org1.example.com:7051",
"CORE_PEER_MSPCONFIGPATH":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.

→˓example.com/users/Admin@org1.example.com/msp",
"CORE_PEER_TLS_ROOTCERT_FILE":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.

→˓example.com/peers/peer0.org1.example.com/tls/ca.crt",
"ORDERER_TLS_ROOTCERT_FILE":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/

→˓example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
},
"discoveryOptions": {
"enabled": true,
"asLocalhost: true"

}
}}}]' > cactus.json

docker run \
(continues on next page)

148 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--mount type=bind,source="$(pwd)"/cactus.json,target=/cactus.json \
cplcb \

./node_modules/.bin/cactusapi \
--config-file=/cactus.json

3.3. Testing API calls with the container

Don’t have a fabric network on hand to test with? Test or develop against our fabric All-In-One container!

Terminal Window 1 (Ledger)

docker run --privileged -p 0.0.0.0:8545:8545/tcp -p 0.0.0.0:8546:8546/tcp -p 0.0.0.
→˓0:8888:8888/tcp -p 0.0.0.0:9001:9001/tcp -p 0.0.0.0:9545:9545/tcp ghcr.io/
→˓hyperledger/cactus-fabric-all-in-one:v1.0.0-rc.2

Terminal Window 2 (Cactus API Server)

docker run \
--network host \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--env PLUGINS='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-fabric",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"instanceId": "some-unique-fabric-
→˓connector-instance-id", "dockerBinary": "usr/local/bin/docker","cliContainerEnv": {

"CORE_PEER_LOCALMSPID": "Org1MSP",
"CORE_PEER_ADDRESS": "peer0.org1.example.com:7051",
"CORE_PEER_MSPCONFIGPATH":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.

→˓example.com/users/Admin@org1.example.com/msp",
"CORE_PEER_TLS_ROOTCERT_FILE":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.

→˓example.com/peers/peer0.org1.example.com/tls/ca.crt",
"ORDERER_TLS_ROOTCERT_FILE":
"/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/

→˓example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem"
},
"discoveryOptions": {
"enabled": true,
"asLocalhost: true"

}
}}}]' \
cplcb

Terminal Window 3 (curl - replace eth accounts as needed)

10.8. @hyperledger/cactus-plugin-ledger-connector-fabric 149

Hyperledger Cactus, Release 1.0.0-rc.3

curl --location --request POST 'http://127.0.0.1:4000/api/v1/plugins/@hyperledger/cactus-
→˓plugin-ledger-connector-fabric/run-transaction' \
--header 'Content-Type: application/json' \
--data-raw '{

channelName: "mychannel",
contractName: "contract-example";
invocationType: "FabricContractInvocationType.SEND";
methodName: "example"

}'

The above should produce a response that looks similar to this:

{
"success": true,
"data": {

"transactionReceipt": {
"blockHash":

→˓"0x7c97c038a5d3bd84613fe23ed442695276d5d2df97f4e7c4f10ca06765033ffd",
"blockNumber": 1218,
"contractAddress": null,
"cumulativeGasUsed": 21000,
"from": "0x627306090abab3a6e1400e9345bc60c78a8bef57",
"gasUsed": 21000,
"logs": [],
"logsBloom":

→˓"0x00
→˓",

"status": true,
"to": "0xf17f52151ebef6c7334fad080c5704d77216b732",
"transactionHash":

→˓"0xc7fcb46c735bdc696d500bfc70c72595a2b8c31813929e5c61d9a5aec3376d6f",
"transactionIndex": 0

}
}

}

10.8.5 4. Prometheus Exporter

This class creates a prometheus exporter, which scraps the transactions (total transaction count) for the use cases in-
corporating the use of Fabric connector plugin.

4.1. Usage Prometheus

The prometheus exporter object is initialized in the PluginLedgerConnectorFabric class constructor it-
self, so instantiating the object of the PluginLedgerConnectorFabric class, gives access to the ex-
porter object. You can also initialize the prometheus exporter object seperately and then pass it to the
IPluginLedgerConnectorFabricOptions interface for PluginLedgerConnectoFabric constructor.

getPrometheusExporterMetricsEndpointV1 function returns the prometheus exporter metrics, currently dis-
playing the total transaction count, which currently increments everytime the transact() method of the
PluginLedgerConnectorFabric class is called.

150 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

4.2. Prometheus Integration

To use Prometheus with this exporter make sure to install Prometheus main component. Once Prometheus is setup, the
corresponding scrape_config needs to be added to the prometheus.yml

- job_name: 'fabric_ledger_connector_exporter'
metrics_path: api/v1/plugins/@hyperledger/cactus-plugin-ledger-connector-fabric/get-

→˓prometheus-exporter-metrics
scrape_interval: 5s
static_configs:
- targets: ['{host}:{port}']

Here the host:port is where the prometheus exporter metrics are exposed. The test cases (For example,
packages/cactus-plugin-ledger-connector-fabric/src/test/typescript/integration/fabric-v1-4-x/run-transaction-
endpoint-v1.test.ts) exposes it over 0.0.0.0 and a random port(). The random port can be found in
the running logs of the test case and looks like (42379 in the below mentioned URL) Metrics URL:
http://0.0.0.0:42379/api/v1/plugins/@hyperledger/cactus-plugin-ledger-connector-fabric/
get-prometheus-exporter-metrics

Once edited, you can start the prometheus service by referencing the above edited prometheus.yml file. On the
prometheus graphical interface (defaulted to http://localhost:9090), choose Graph from the menu bar, then select the
Console tab. From the Insert metric at cursor drop down, select cactus_fabric_total_tx_count and click execute

4.3. Helper code

4.3.1. response.type.ts

This file contains the various responses of the metrics.

4.3.2. data-fetcher.ts

This file contains functions encasing the logic to process the data points

4.3.3. metrics.ts

This file lists all the prometheus metrics and what they are used for.

10.8.6 5. Contributing

We welcome contributions to Hyperledger Cactus in many forms, and there’s always plenty to do!

Please review CONTIRBUTING.md to get started.

10.8. @hyperledger/cactus-plugin-ledger-connector-fabric 151

https://prometheus.io/download/

Hyperledger Cactus, Release 1.0.0-rc.3

10.8.7 6. License

This distribution is published under the Apache License Version 2.0 found in the LICENSE file.

10.8.8 7. Acknowledgments

10.9 @hyperledger/cactus-plugin-ledger-connector-quorum

This plugin provides Cactus a way to interact with Quorum networks. Using this we can perform:

• Deploy Smart-contracts through bytecode.

• Build and sign transactions using different keystores.

• Invoke smart-contract functions that we have deployed on the network.

10.9.1 Summary

• Getting Started

• Usage

• Prometheus Exporter

• Runing the tests

• Contributing

• License

• Acknowledgments

10.9.2 Getting Started

Clone the git repository on your local machine. Follow these instructions that will get you a copy of the project up and
running on your local machine for development and testing purposes.

Prerequisites

In the root of the project to install the dependencies execute the command:

npm run comfigure

Compiling

In the projects root folder, run this command to compile the plugin and create the dist directory:

npm run tsc

152 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

10.9.3 Usage

To use this import public-api and create new PluginLedgerConnectorQuorum.

const connector: PluginLedgerConnectorQuorum = new PluginLedgerConnectorQuorum({
instanceId: uuidV4(),
rpcApiHttpHost,
pluginRegistry: new PluginRegistry(),

});

You can make calls through the connector to the plugin API:

async invokeContract(req: InvokeContractV1Request):Promise<InvokeContractV1Response>;
async transactSigned(rawTransaction: string): Promise<RunTransactionResponse>;
async transactPrivateKey(req: RunTransactionRequest): Promise<RunTransactionResponse>;
async transactCactusKeychainRef(req: RunTransactionRequest):Promise
→˓<RunTransactionResponse>;
async deployContract(req: DeployContractSolidityBytecodeV1Request):Promise
→˓<RunTransactionResponse>;
async signTransaction(req: SignTransactionRequest):Promise<Optional
→˓<SignTransactionResponse>>;

Call example to deploy a contract:

const deployOut = await connector.deployContract({
web3SigningCredential: {
ethAccount: firstHighNetWorthAccount,
secret: "",
type: Web3SigningCredentialType.GETHKEYCHAINPASSWORD,

},
bytecode: ContractJson.bytecode,
gas: 1000000,

});

The field “type” can have the following values:

enum Web3SigningCredentialType {
CACTUSKEYCHAINREF = 'CACTUS_KEYCHAIN_REF',
GETHKEYCHAINPASSWORD = 'GETH_KEYCHAIN_PASSWORD',
PRIVATEKEYHEX = 'PRIVATE_KEY_HEX',
NONE = 'NONE'

}

Extensive documentation and examples in the readthedocs (WIP)

10.9. @hyperledger/cactus-plugin-ledger-connector-quorum 153

https://readthedocs.org/projects/hyperledger-cactus/

Hyperledger Cactus, Release 1.0.0-rc.3

10.9.4 Running the tests

To check that all has been installed correctly and that the pugin has no errors, there are two options to run the tests:

• Run this command at the project’s root:

npm run test:plugin-ledger-connector-quorum

Building/running the container image locally

In the Cactus project root say:

DOCKER_BUILDKIT=1 docker build -f ./packages/cactus-plugin-ledger-connector-quorum/
→˓Dockerfile . -t cplcb

Build with a specific version of the npm package:

DOCKER_BUILDKIT=1 docker build --build-arg NPM_PKG_VERSION=0.4.1 -f ./packages/cactus-
→˓plugin-ledger-connector-quorum/Dockerfile . -t cplcb

Running the container

Launch container with plugin configuration as an environment variable:

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--env PLUGINS='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-quorum",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost": "http://
→˓localhost:8545", "instanceId": "some-unique-quorum-connector-instance-id"}}]' \
cplcb

Launch container with plugin configuration as a CLI argument:

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
cplcb \
./node_modules/.bin/cactusapi \
--plugins='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-quorum",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost": "http://
→˓localhost:8545", "instanceId": "some-unique-quorum-connector-instance-id"}}]'

Launch container with configuration file mounted from host machine:

154 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

echo '[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-quorum", "type":
→˓"org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.cactus.
→˓plugin_import_action.INSTALL", "options": {"rpcApiHttpHost": "http://localhost:8545",
→˓"instanceId": "some-unique-quorum-connector-instance-id"}}]' > cactus.json

docker run \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--mount type=bind,source="$(pwd)"/cactus.json,target=/cactus.json \
cplcb \

./node_modules/.bin/cactusapi \
--config-file=/cactus.json

Testing API calls with the container

Don’t have a quorum network on hand to test with? Test or develop against our quorum All-In-One container!

Terminal Window 1 (Ledger)

docker run -p 0.0.0.0:8545:8545/tcp -p 0.0.0.0:8546:8546/tcp -p 0.0.0.0:8888:8888/tcp ␣
→˓-p 0.0.0.0:9001:9001/tcp -p 0.0.0.0:9545:9545/tcp hyperledger/cactus-quorum-all-in-
→˓one:latest

Terminal Window 2 (Cactus API Server)

docker run \
--network host \
--rm \
--publish 3000:3000 \
--publish 4000:4000 \
--env PLUGINS='[{"packageName": "@hyperledger/cactus-plugin-ledger-connector-quorum",

→˓"type": "org.hyperledger.cactus.plugin_import_type.LOCAL", "action": "org.hyperledger.
→˓cactus.plugin_import_action.INSTALL", "options": {"rpcApiHttpHost": "http://
→˓localhost:8545", "instanceId": "some-unique-quorum-connector-instance-id"}}]' \
cplcb

Terminal Window 3 (curl - replace eth accounts as needed)

curl --location --request POST 'http://127.0.0.1:4000/api/v1/plugins/@hyperledger/cactus-
→˓plugin-ledger-connector-quorum/run-transaction' \
--header 'Content-Type: application/json' \
--data-raw '{

"web3SigningCredential": {
"ethAccount": "627306090abaB3A6e1400e9345bC60c78a8BEf57",
"secret": "c87509a1c067bbde78beb793e6fa76530b6382a4c0241e5e4a9ec0a0f44dc0d3",
"type": "PRIVATE_KEY_HEX"

},
"consistencyStrategy": {
"blockConfirmations": 0,
"receiptType": "NODE_TX_POOL_ACK"

},
(continues on next page)

10.9. @hyperledger/cactus-plugin-ledger-connector-quorum 155

Hyperledger Cactus, Release 1.0.0-rc.3

(continued from previous page)

"transactionConfig": {
"from": "627306090abaB3A6e1400e9345bC60c78a8BEf57",
"to": "f17f52151EbEF6C7334FAD080c5704D77216b732",
"value": 1,
"gas": 10000000

}
}'

The above should produce a response that looks similar to this:

{
"success": true,
"data": {

"transactionReceipt": {
"blockHash":

→˓"0x7c97c038a5d3bd84613fe23ed442695276d5d2df97f4e7c4f10ca06765033ffd",
"blockNumber": 1218,
"contractAddress": null,
"cumulativeGasUsed": 21000,
"from": "0x627306090abab3a6e1400e9345bc60c78a8bef57",
"gasUsed": 21000,
"logs": [],
"logsBloom":

→˓"0x00
→˓",

"status": true,
"to": "0xf17f52151ebef6c7334fad080c5704d77216b732",
"transactionHash":

→˓"0xc7fcb46c735bdc696d500bfc70c72595a2b8c31813929e5c61d9a5aec3376d6f",
"transactionIndex": 0

}
}

}

10.9.5 Prometheus Exporter

This class creates a prometheus exporter, which scrapes the transactions (total transaction count) for the use cases
incorporating the use of Quorum connector plugin.

Prometheus Exporter Usage

The prometheus exporter object is initialized in the PluginLedgerConnectorQuorum class constructor it-
self, so instantiating the object of the PluginLedgerConnectorQuorum class, gives access to the ex-
porter object. You can also initialize the prometheus exporter object seperately and then pass it to the
IPluginLedgerConnectorQuorumOptions interface for PluginLedgerConnectoQuorum constructor.

getPrometheusMetricsV1 function returns the prometheus exporter metrics, currently displaying the total transac-
tion count, which currently increments everytime the transact() method of the PluginLedgerConnectorQuorum
class is called.

156 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

Prometheus Integration

To use Prometheus with this exporter make sure to install Prometheus main component. Once Prometheus is setup, the
corresponding scrape_config needs to be added to the prometheus.yml

- job_name: 'quorum_ledger_connector_exporter'
metrics_path: api/v1/plugins/@hyperledger/cactus-plugin-ledger-connector-quorum/get-

→˓prometheus-exporter-metrics
scrape_interval: 5s
static_configs:
- targets: ['{host}:{port}']

Here the host:port is where the prometheus exporter metrics are exposed. The test cases (For exam-
ple, packages/cactus-plugin-ledger-connector-quorum/src/test/typescript/integration/plugin-ledger-connector-
quorum/deploy-contract/deploy-contract-from-json.test.ts) exposes it over 0.0.0.0 and a random port(). The random
port can be found in the running logs of the test case and looks like (42379 in the below mentioned URL) Metrics URL:
http://0.0.0.0:42379/api/v1/plugins/@hyperledger/cactus-plugin-ledger-connector-quorum/
get-prometheus-exporter-metrics

Once edited, you can start the prometheus service by referencing the above edited prometheus.yml file. On the
prometheus graphical interface (defaulted to http://localhost:9090), choose Graph from the menu bar, then select the
Console tab. From the Insert metric at cursor drop down, select cactus_quorum_total_tx_count and click execute

Helper code

response.type.ts

This file contains the various responses of the metrics.

data-fetcher.ts

This file contains functions encasing the logic to process the data points

metrics.ts

This file lists all the prometheus metrics and what they are used for.

10.9.6 Running the tests

To check that all has been installed correctly and that the pugin has no errors, there are two options to run the tests:

• Run this command at the project’s root:

npm run test:plugin-ledger-connector-quorum

10.9. @hyperledger/cactus-plugin-ledger-connector-quorum 157

https://prometheus.io/download/

Hyperledger Cactus, Release 1.0.0-rc.3

10.9.7 Contributing

We welcome contributions to Hyperledger Cactus in many forms, and there’s always plenty to do!

Please review CONTIRBUTING.md to get started.

10.9.8 License

This distribution is published under the Apache License Version 2.0 found in the LICENSE file.

10.9.9 Acknowledgments

10.10 @hyperledger/cactus-test-api-client

This is the test package for the package that’s called cactus-api-client

10.10.1 Usage

// TODO: DEMONSTRATE API

10.10.2 FAQ

What is a dedicated test package for?

This is a dedicated test package meaning that it verifies the integration between two packages that are somehow depen-
dent on each other and therefore these tests cannot be added properly in the child package due to circular dependency
issues and it would not be fitting to add it in the parent because the child package’s tests should not be held by the parent
as a matter of principle.

10.11 @hyperledger/cactus-test-cmd-api-server

This is the test package for the package that’s called cactus-cmd-api-server

10.11.1 Usage

// TODO: DEMONSTRATE API

158 Chapter 10. Cactus Components

Hyperledger Cactus, Release 1.0.0-rc.3

10.11.2 FAQ

What is a dedicated test package for?

This is a dedicated test package meaning that it verifies the integration between two packages that are somehow depen-
dent on each other and therefore these tests cannot be added properly in the child package due to circular dependency
issues and it would not be fitting to add it in the parent because the child package’s tests should not be held by the parent
as a matter of principle.

10.12 @hyperledger/cactus-test-plugin-ledger-connector-quorum

10.12.1 Usage

// TODO: DEMONSTRATE API

10.12.2 FAQ

What is a dedicated test package for?

This is a dedicated test package meaning that it verifies the integration between two packages that are somehow depen-
dent on each other and therefore these tests cannot be added properly in the child package due to circular dependency
issues and it would not be fitting to add it in the parent because the child package’s tests should not be held by the parent
as a matter of principle.

10.13 @hyperledger/cactus-test-tooling

TODO: description

10.13.1 Usage

// TODO: DEMONSTRATE API

10.13.2 Docker image for the ws-identity server

A docker image of the ws-identity server is used to test integration of WS-X.509 credential type in the fabric connector
plugin.

ws-identity includes A Docker file to build the image: clone the repo, install packages, build src and the image

npm install
npm run build
docker build . -t [image-name]

10.12. @hyperledger/cactus-test-plugin-ledger-connector-quorum 159

https://hub.docker.com/repository/docker/brioux/ws-identity
https://github.com/brioux/ws-identity

Hyperledger Cactus, Release 1.0.0-rc.3

160 Chapter 10. Cactus Components

CHAPTER

ELEVEN

LEDGER SUPPORT FOR CONNECTORS

This section contains the ledger supported versions for connectors in Hyperledger Cactus.

11.1 Besu Support

Note: The deployContract feature is for development and test case authoring only, not recommended to be used in
production environments for managing smart contracts.

11.2 Corda Support

Note: The deployContract feature is for development and test case authoring only, not recommended to be used in
production environments for managing smart contracts.

11.3 Fabric Support

Note: The deployContract feature is for development and test case authoring only, not recommended to be used in
production environments for managing smart contracts.

11.4 Iroha Support

Note: The deployContract feature not yet implemented since Iroha lacks full smart contract support during the initial
development stage of the Iroha connector plugin.

161

Hyperledger Cactus, Release 1.0.0-rc.3

11.5 Quorum Support

Note: The deployContract feature is for development and test case authoring only, not recommended to be used in
production environments for managing smart contracts.

11.6 xDai Support

Note: The deployContract feature is for development and test case authoring only, not recommended to be used in
production environments for managing smart contracts.

162 Chapter 11. Ledger Support for Connectors

	Hyperledger Cactus
	Scope of Project
	Run the Examples
	Supply Chain Example
	Car Trade Example
	Electricity Trade Example

	Documentation
	Roadmap
	Contact
	Build/Development Flow
	Contributing
	License

	Hyperledger Cactus Build Instructions
	Developers guide
	Installing git
	Installing and configuring docker
	Installing npm and node
	Installing VSCode and plugins
	Clone the repository
	Compiling all packages
	Testing all packages
	Compiling a specific packages
	Testing a specific package
	Package structure - OpenAPI
	Package structure - Web Services
	Package structure - Main and Factory Plugin class
	Package structure - Test class

	Fast Developer Flow / Code Iterations
	Getting Started
	Random Windows specific issues not covered here

	Build Script Decision Tree
	Getting into the SSH connection

	Examples
	Hyperledger Cactus Example - Supply Chain App
	Usage
	Building and running the container locally
	Running the Example Application Locally
	Debugging the Example Application Locally

	Governance
	Code of Conduct Guidelines
	Contributing
	Git Know How / Reading List
	PR Checklist - Contributor/Developer
	PR Checklist - Maintainer/Reviewer
	Create local branch
	Directory structure

	Test Automation
	Summary
	Test Case Core Principles

	Working with the Code
	Running/Debugging the tests
	Running a single test case
	Running all test cases (unit+integration)
	Running unit tests only
	Running integration tests only
	What is npx used for?
	What’s the equivalent of npx for Yarn?
	Debugging a test case

	All-In-One Docker Images for Ledger Connector Plugins
	Test Automation of Ledger Plugins

	Building the API Client(S)
	Adding new dependencies:
	Reload VSCode Window After Adding Dependencies
	On Reproducible Builds

	Maintainers
	Whitepaper
	Hyperledger CactusWhitepaper
	Version 0.1 (Early Draft)

	Contributors
	Document Revisions
	1. Abstract
	2. Introduction to Blockchain Interoperability
	2.1 Terminology of Blockchain Interoperability
	2.1.1 Ledger Object Types
	2.1.2 Blockchain Interoperability Types
	2.1.3 Burning or Locking of Assets

	2.2 Footnotes (Introduction)

	3. Example Use Cases
	3.1 Car Trade
	3.2 Electricity Trade
	3.3 Supply chain
	3.4 Ethereum to Quorum Asset Transfer
	3.5 Escrowed Sale of Data for Coins
	3.6 Money Exchanges
	3.7 Stable Coin Pegged to Other Currency
	3.7.1 With Permissionless Ledgers (BTC)
	3.7.2 With Fiat Money (USD)

	3.8 Healthcare Data Sharing with Access Control Lists
	3.9 Integrate Existing Food Traceability Solutions
	3.10 End User Wallet Authentication/Authorization
	3.11 Blockchain Migration
	3.11.1 Blockchain Data Migration
	3.11.2 Blockchain Smart Contract Migration
	3.11.3 Semi-Automatic Blockchain Migration

	4. Software Design
	4.1. Principles
	4.1.1. Wide support
	4.1.2. Plugin Architecture from all possible aspects
	4.1.3. Prevent Double spending Where Possible
	4.1.4 DLT Feature Inclusivity
	4.1.5 Low impact
	4.1.6 Transparency
	4.1.7 Automated workflows
	4.1.8 Default to Highest Security
	4.1.9 Transaction Protocol Negotiation
	4.1.10 Avoid modifying the total amount of digital assets on any blockchain whenever possible
	4.1.11 Provide abstraction for common operations
	4.1.12 Integration with Identity Frameworks (Moonshot)

	4.2 Feature Requirements
	4.2.1 New Protocol Integration
	4.2.2 Proxy/Firewall/NAT Compatibility
	4.2.3 Bi-directional Communications Layer
	4.2.4 Consortium Management

	4.3 Working Policies

	5. Architecture
	5.1 Deployment Scenarios
	5.1.1 Production Deployment Example
	5.1.2 Low Resource Deployment Example

	5.2 System architecture and basic flow
	5.2.1 Definition of key components in system architecture
	5.2.2 Bootstrapping Cactus application
	5.2.3 Processing Service API call

	5.3 APIs and communication protocols between Cactus components
	5.3.1 Cactus Service API
	Open Endpoints
	Restricted Endpoints

	5.3.2 Ledger plugin API
	5.3.3 Exection of “business logic” at “Business Logic Plugin”

	5.4 Technical Architecture
	5.4.1 Monorepo Packages
	5.4.1.1 cmd-api-server
	5.4.1.1.1 Runtime Configuration Parsing and Validation
	5.4.1.1.2 Configuration Schema - API Server
	5.4.1.1.3 Plugin Loading/Validation

	5.4.1.2 core-api
	5.4.1.3 API Client
	5.4.1.4 keychain
	5.4.1.5 tracing
	5.4.1.6 audit
	5.4.1.7 document-storage
	5.4.1.8 relational-storage
	5.4.1.9 immutable-storage

	5.4.2 Deployment Diagram
	5.4.3 Component Diagram
	5.4.4 Class Diagram
	5.4.5 Sequence Diagram - Transactions

	5.5 Transaction Protocol Specification
	5.5.1 Handshake Mechanism
	5.5.2 Transaction Protocol Negotiation

	5.6 Plugin Architecture
	5.6.1 Ledger Connector Plugins
	5.6.1.1 Ledger Connector Besu Plugin
	5.6.1.2 Ledger Connector Fabric Plugin
	5.6.1.3 Ledger Connector Quorum Plugin

	5.6.2 HTLCs Plugins
	5.6.2.1 HTLC-ETH-Besu Plugin
	5.6.2.2 HTLC-ETH-ERC20-Besu Plugin

	5.6.3 Identity Federation Plugins
	5.6.3.1 X.509 Certificate Plugin

	5.6.4 Key/Value Storage Plugins
	5.6.5 Serverside Keychain Plugins
	5.6.6 Manual Consortium Plugin
	5.6.7 Test Tooling

	6. Identities, Authentication, Authorization
	6.1 Definition of Identities in Cactus
	6.2 Transaction Signing Modes, Key Ownership
	6.2.1 Client-side Transaction Signing
	6.2.2 Server-side Transaction Signing

	6.3 Open ID Connect Provider, Identity Provider
	6.4 Server-side Keychain for Web Applications

	7. Terminology
	8. Related Work
	9. References
	10. Recommended Reference

	Regulatory and Industry Initiatives Reading List
	MICA European crypto assets regulation (coming into force by 2023)
	Pilot Regime for DLT market infrastructure
	Paperless trade framework (UN / UNESCAP more on APAC now but supposed to expand in EU) for bilateral cooperation
	ICC Digital Standard Initiative (Private sector)
	BAFT Digital Ledger Payment Commitment - Technical and Business Best Practices (Private sector - Banking Industry)
	DCSA Digital Container Shipping Association (Private sector - shipping industry)
	MSB Networked Supervision
	OCC Interpretative letter on the use of DA for payments
	Open Digital Asset Protocol from IETF (Thanks to Rafael Belchior for these)

	Cactus Components
	@hyperledger/cactus-api-client
	Summary
	Usage
	Routing to Cactus Node with connector to specific ledger
	Leverage the ConsortiumDatabase for discovery
	Use a provided mainApiHost and ledgerId
	Use the API host of a node directly

	Public API Surface
	DefaultConsortiumProvider
	ApiClient

	@hyperledger/cactus-cmd-api-server
	Summary
	Usage
	Basic Example
	Remote Plugin Imports at Runtime Example
	Complete Example

	Deployment Scenarios
	Production Deployment Example
	Low Resource Deployment Example

	Containerization
	Building the container image locally
	Running the container image locally
	Testing API calls with the container

	Prometheus Exporter
	Usage Prometheus
	Prometheus Integration
	Shutdown Hook
	Helper code
	response.type.ts
	data-fetcher.ts
	metrics.ts

	FAQ
	What is the difference between a Cactus Node and a Cactus API Server?
	Is the API server horizontally scalable?
	Does the API server automatically protect me from malicious plugins?
	Can I use the API server with plugins deployed as a service?

	@hyperledger/cactus-common
	Usage

	@hyperledger/cactus-core
	Usage

	@hyperledger/cactus-plugin-keychain-vault
	Prometheus Exporter
	Usage
	Prometheus Integration
	Helper code
	response.type.ts
	data-fetcher.ts
	metrics.ts

	@hyperledger/cactus-plugin-ledger-connector-besu
	Summary
	Getting Started
	Prerequisites
	Compiling
	Architecture
	run-transaction-endpoint

	Usage
	Transaction Privacy Feature
	Building/running the container image locally
	Running the container
	Testing API calls with the container

	Prometheus Exporter
	Prometheus Exporter Usage
	Prometheus Integration
	Helper code
	response.type.ts
	data-fetcher.ts
	metrics.ts

	Running the tests
	Contributing
	License
	Acknowledgments

	@hyperledger/cactus-plugin-ledger-connector-corda
	Table of Contents
	Summary
	Concepts
	Contract Invocation JSON DSL
	Expressing Primitive vs Reference Types with the DLS
	Flow Invocation Types

	Usage
	Invoke Contract (flow) with no parameters
	Invoke Contract (flow) with a single integer parameter
	Invoke Contract (flow) with a custom class parameter
	Custom Configuration via Env Variables

	Building Docker Image Locally
	Example NodeDiagnosticInfo JSON Response
	Monitoring
	Usage Prometheus
	Prometheus Integration
	Helper code
	response.type.ts
	data-fetcher.ts
	metrics.ts

	@hyperledger/cactus-plugin-ledger-connector-fabric
	Table of Contents
	1. Usage
	1.1. Installation
	1.2. Using as a Library
	1.3. Using Via The API Client
	1.4. Signing Credentials with Hashicorp Vault
	1.4.1. Identity Providers
	1.4.2. Setting up a WS-X.509 provider
	1.4.3. Building the ws-identity docker image

	2. Architecture
	2.1. run-transaction-endpoint

	3. Containerization
	3.1. Building/running the container image locally
	3.2. Running the container
	3.3. Testing API calls with the container

	4. Prometheus Exporter
	4.1. Usage Prometheus
	4.2. Prometheus Integration
	4.3. Helper code
	4.3.1. response.type.ts
	4.3.2. data-fetcher.ts
	4.3.3. metrics.ts

	5. Contributing
	6. License
	7. Acknowledgments

	@hyperledger/cactus-plugin-ledger-connector-quorum
	Summary
	Getting Started
	Prerequisites
	Compiling

	Usage
	Running the tests
	Building/running the container image locally
	Running the container
	Testing API calls with the container

	Prometheus Exporter
	Prometheus Exporter Usage
	Prometheus Integration
	Helper code
	response.type.ts
	data-fetcher.ts
	metrics.ts

	Running the tests
	Contributing
	License
	Acknowledgments

	@hyperledger/cactus-test-api-client
	Usage
	FAQ
	What is a dedicated test package for?

	@hyperledger/cactus-test-cmd-api-server
	Usage
	FAQ
	What is a dedicated test package for?

	@hyperledger/cactus-test-plugin-ledger-connector-quorum
	Usage
	FAQ
	What is a dedicated test package for?

	@hyperledger/cactus-test-tooling
	Usage
	Docker image for the ws-identity server

	Ledger Support for Connectors
	Besu Support
	Corda Support
	Fabric Support
	Iroha Support
	Quorum Support
	xDai Support

